首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9225篇
  免费   683篇
  9908篇
  2023年   63篇
  2022年   114篇
  2021年   208篇
  2020年   139篇
  2019年   166篇
  2018年   240篇
  2017年   190篇
  2016年   300篇
  2015年   469篇
  2014年   451篇
  2013年   639篇
  2012年   696篇
  2011年   679篇
  2010年   436篇
  2009年   399篇
  2008年   505篇
  2007年   494篇
  2006年   493篇
  2005年   484篇
  2004年   424篇
  2003年   380篇
  2002年   378篇
  2001年   122篇
  2000年   104篇
  1999年   113篇
  1998年   94篇
  1997年   92篇
  1996年   58篇
  1995年   77篇
  1994年   56篇
  1993年   51篇
  1992年   65篇
  1991年   66篇
  1990年   54篇
  1989年   57篇
  1988年   62篇
  1987年   40篇
  1986年   38篇
  1985年   32篇
  1984年   49篇
  1983年   34篇
  1982年   33篇
  1981年   42篇
  1980年   32篇
  1979年   25篇
  1978年   25篇
  1977年   15篇
  1976年   14篇
  1974年   15篇
  1973年   11篇
排序方式: 共有9908条查询结果,搜索用时 15 毫秒
71.
Octopus mimus is an important cephalopod species in the coastal zone of Peru and Chile that is exposed to temperature variations from time to time due to El Niño/Southern Oscillation (ENSO) episodes when surface temperatures can reach 24 °C, 6 °C above typical temperatures in their habitat. The relationships between temperature and food availability are important factors that determine the recruitment of juveniles into the O. mimus population. The present study was to evaluate the relationship between thermoregulatory behavior and the age of paralarvae (summer population) to determine whether changes in this behavior occur during internal yolk consumption, making larvae more vulnerable to environmental temperature change. Oxygen consumption of paralarvae when 1–4 d old was determined to establish if respiration could be used to monitor the physiological changes that occur during yolk consumption. Horizontal thermal selection (17–30 °C), critical thermal maxima (CTMax), minima (CTMin), and oxygen consumption experiments were conducted with fasting paralarvae 1–4 d old at 20 °C. Preferred temperatures were dependent on the age of O. mimus paralarvae. One day old paralarvae selected a temperature 1.1 °C (23·4 °C) higher than 2 – 4 d old paralarvae (22·3 °C). The CTMax of paralarvae increased with age with values of 31·9±1.1 °C in 1-d-olds and 33·4±0.3 to 4-d-olds. CTMin also changed with age with low values in 2-d-old paralarvae (9.1±1·3 °C) and 11·9±0·9 °C in 4-d-old animals. The temperature tolerance range of paralarvae was age-dependent (TTD=difference between CTMax and CTMin) with higher values in 2 and 3 d old paralarvae (25–26 °C) as compared to 1 d old (23·1 °C) and 4 d old animals (22.7 °C). Oxygen consumption was not affected by the age of paralarvae, suggesting that mechanisms exist that compensate their metabloism until at least 4 d of age. The temperature tolerance range of a planktonic paralarvae of octopus species is presented for the first time. This range was dependent on the age of paralarvae, and so rendered the paralarvae more vunerable to a combination of high temperature and food deprivation during first days of life. Results in the present study provide evidence that O. mimus could be under ecological pressure if a climate change causes increased or decreased temperatures into their distribution range.  相似文献   
72.
73.
Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.Argininosuccinic aciduria (ASAuria, MIM 207900)3 is an autosomal recessive disorder of the urea cycle caused by mutations of the ASL gene (hASL, MIM 608310), encoding argininosuccinate lyase (ASL; EC 4.3.2.1.) (1). This enzyme is ubiquitously expressed and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. ASL belongs to a superfamily of hydrolases that includes adenylosuccinate lyase and fumarase, which share a homotetrameric structure and a similar catalytic mechanism. The tetrameric structure of ASL accounts for the phenomenon of intragenic complementation. This particular situation occurs when a multimeric protein is formed from subunits produced by differently mutated alleles of the same gene. On complementation, a partially functional hybrid protein is produced from the two distinct types of mutant subunits, neither of which individually has appreciable enzymatic activity (2).ASL participates to the urea cycle, and in humans it is essential for ammonia detoxification, whereas in lower organisms it is required for the biosynthesis of arginine. Saccharomyces cerevisiae strains harboring a deletion of the homolog of human ASL (ARG4) cannot grow on media lacking arginine (3).ASAuria is characterized by accumulation of argininosuccinic acid (ASA) in body fluids, and severe hyperammonaemia. The disease displays clinical heterogeneity with two main clinical phenotypes: the acute/neonatal onset form, with symptoms rapidly progressing to deep coma, apnea, and death (1), and the subacute/late onset type, which is diagnosed in infancy or childhood (4). Such patients may present simply with mental retardation or an epileptic disorder. In both types the diagnosis is established unambiguously by measuring plasma levels of ammonia (not always elevated in the late onset form), ASA, and its anhydrides by plasma amino acids assay (1). Over 40 mutations of the ASL gene have been reported, both amino acid substitutions and truncating variants, which are scattered throughout the gene (5, 6).We have previously reported the identification of novel mutations of the ASL gene in a cohort of Italian patients (7). In this study we employed a yeast model to validate the pathogenicity of missense ASL mutations found in our cohort, to study the effects of different allelic combinations, and to establish possible genotype-phenotype correlations.  相似文献   
74.
75.
Previous work by our group showed that aged C57BL/6 mice develop an altered innate and adaptive immune response to Candida albicans and are more susceptible to systemic primary candidiasis. In this work, we used young (2-3 months old) and aged (18-20 months old) C57BL/6 mice to study in vitro the influence of aging on (1) the fungicidal activity of neutrophils and macrophages, (2) the production of cytokines by resident peritoneal macrophages in response to C. albicans, and (3) cell surface Toll-like receptor (TLR) 2 expression on resident peritoneal macrophages. Our results indicate that murine phagocytes have a fungicidal activity well preserved with aging. In vitro production of proinflammatory cytokines (IL-6, IL-1beta, and tumor necrosis factor-alpha and chemokines (MIP-2) by purified (CD11b(+)) peritoneal macrophages in response to yeasts and hyphae of C. albicans was significantly lower in aged mice as compared with young mice. However, the production of IL-10 by macrophages, in response to C. albicans, was similar in both young and aged animals. Moreover, baseline TLR2 surface expression level was lower on aged macrophages than on control macrophages. Taken together, these data indicate that the increased susceptibility to C. albicans disseminated infections in aged mice is correlated with defects in TLR2 expression and in cytokine production, but not with an impaired fungicidal activity.  相似文献   
76.
Eighteen green turtles Chelonia mydas recovered from the Atlantic and Gulf coasts of Florida and Tortuguero National Park, Costa Rica, were diagnosed with renal oxalosis by histopathological examination. Affected sea turtles included 14 adults and 4 immature animals, which comprised 26% (18/69) of green turtle necropsy cases available for review. Calcium oxalate deposition ranged from small to moderate amounts and was associated with granuloma formation and destruction of renal tubules. All affected turtles died from traumatic events or health problems unrelated to renal oxalosis; however, 1 immature turtle had notable associated renal injury. Crystal composition was confirmed by infrared and scanning electron microscopy and energy dispersive X-ray analysis. The source of calcium oxalate is unknown and is presumed to be of dietary origin.  相似文献   
77.
Programmed death-1 (PD-1), an inhibitory receptor up-regulated on activated T cells, has been shown to play a critical immunoregulatory role in peripheral tolerance, but its role in alloimmune responses is poorly understood. Using a novel alloreactive TCR-transgenic model system, we examined the functions of this pathway in the regulation of alloreactive CD4+ T cell responses in vivo. PD-L1, but not PD-1 or PD-L2, blockade accelerated MHC class II-mismatched skin graft (bm12 (I-Abm12) into B6 (I-Ab)) rejection in a similar manner to CTLA-4 blockade. In an adoptive transfer model system using the recently described anti-bm12 (ABM) TCR-transgenic mice directly reactive to I-Abm12, PD-1 and PD-L1 blockade enhanced T cell proliferation early in the immune response. In contrast, at a later time point preceding accelerated allograft rejection, only PD-L1 blockade enhanced T cell proliferation. In addition, PD-L1 blockade enhanced alloreactive Th1 cell differentiation. Apoptosis of alloantigen-specific T cells was inhibited significantly by PD-L1 but not PD-1 blockade, indicating that PD-1 may not be the receptor for the apoptotic effect of the PD-L1-signaling pathway. Interestingly, the effect of PD-L1 blockade was dependent on the presence of CD4+ CD25+ regulatory T cells in vivo. These data demonstrate a critical role for the PD-1 pathway, particularly PD-1/PD-L1 interactions, in the regulation of alloimmune responses in vivo.  相似文献   
78.
79.
Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol l?1 nearshore and 4 nmol l?1 offshore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In nearshore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM-rich sediments. In offshore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the chlorophyll-a spring peak, suggesting that in these OM-poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most offshore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m?2 y?1 in the most nearshore stations (~4 km from the coast) and 28 mmol m?2 y?1 in the most offshore stations (~23 km from the coast), 1260–280 times higher than the open ocean average value (0.1 mmol m?2 y?1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号