首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   66篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   14篇
  2016年   13篇
  2015年   19篇
  2014年   23篇
  2013年   18篇
  2012年   21篇
  2011年   24篇
  2010年   21篇
  2009年   18篇
  2008年   21篇
  2007年   18篇
  2006年   16篇
  2005年   20篇
  2004年   17篇
  2003年   17篇
  2002年   19篇
  2001年   18篇
  2000年   19篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   11篇
  1995年   8篇
  1994年   4篇
  1993年   10篇
  1992年   11篇
  1991年   7篇
  1990年   13篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   9篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1979年   9篇
  1978年   6篇
  1975年   4篇
  1974年   8篇
  1972年   3篇
  1971年   3篇
  1969年   5篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
91.
In most eukaryotes, telomeric DNA consists of repeats of a short motif that includes consecutive guanines and may hence fold into G-quadruplexes. Budding yeasts have telomeres composed of longer repeats and show variation in the degree of repeat homogeneity. Although telomeric sequences from several organisms have been shown to fold into G-quadruplexes in vitro, surprisingly, no study has been dedicated to the comparison of G-quadruplex folding and stability of known telomeric sequences. Furthermore, to our knowledge, folding of yeast telomeric sequences into intramolecular G-quadruplexes has never been investigated. Using biophysical and biochemical methods, we studied sequences mimicking about four repetitions of telomeric motifs from a variety of organisms, including yeasts, with the aim of comparing the G-quadruplex folding potential of telomeric sequences among eukaryotes. G-quadruplex folding did not appear to be a conserved feature among yeast telomeric sequences. By contrast, all known telomeric sequences from eukaryotes other than yeasts folded into G-quadruplexes. Nevertheless, while G(3)T(1-4)A repeats (found in a variety of organisms) and G(4)T(2,4) repeats (found in ciliates) folded into stable G-quadruplexes, G-quadruplexes formed by repetitions of G(2)T(2)A and G(2)CT(2)A motifs (found in many insects and in nematodes, respectively) appeared to be in equilibrium with non-G-quadruplex structures (likely hairpin-duplexes).  相似文献   
92.
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome‐wide studies in vertebrates have recently identified a consensus G‐rich motif potentially able to form G‐quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200‐bp cis‐regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.  相似文献   
93.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.  相似文献   
94.

Background

The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far.

Results

We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation.

Conclusion

Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0546-4) contains supplementary material, which is available to authorized users.  相似文献   
95.

Introduction

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

Methods

1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

Results

We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.

Conclusions

These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.  相似文献   
96.
Trop-2 is a calcium signal transducer that drives tumor growth. Anti-Trop-2 antibodies with selective reactivity versus Trop-2 maturation stages allowed to identify two different pools of Trop-2, one localized in the cell membrane and one in the cytoplasm. Of note, membrane-localized/functional Trop-2 was found to be differentially associated with determinants of tumor aggressiveness and distinct breast cancer subgroups. These findings candidated Trop-2 states to having an impact on cancer progression. We tested this model in breast cancer. A large, consecutive human breast cancer case series (702 cases; 8 years median follow-up) was analyzed by immunohistochemistry with anti-Trop-2 antibodies with selective reactivity for cytoplasmic-retained versus functional, membrane-associated Trop-2. We show that membrane localization of Trop-2 is an unfavorable prognostic factor for overall survival (1+ versus 0 for all deaths: hazard ratio, 1.63; P = 0.04), whereas intracellular Trop-2 has a favorable impact on prognosis, with an adjusted hazard ratio for all deaths of 0.48 (high versus low; P = 0.003). A corresponding impact of intracellular Trop-2 was found on disease relapse (high versus low: hazard ratio, 0.51; P = 0.004). Altogether, we demonstrate that the Trop-2 activation states are critical determinants of tumor progression and are powerful indicators of breast cancer patients survival.  相似文献   
97.
BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3–5% of total). The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2) and cancer stem cell marker genes (CD44 and ALDH1) compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.  相似文献   
98.
Human telomeres are composed of GGGTTA repeats and interspersed with variant repeats. The GGGCTA variant motif was identified in the proximal regions of human telomeres about 10 years ago and was shown to display a length-dependent instability. In parallel, a structural study showed that four GGGCTA repeats folded into a non-canonical G-quadruplex (G4) comprising a Watson–Crick GCGC tetrad. It was proposed that this non-canonical G4 might be an additional obstacle for telomere replication. In the present study, we demonstrate that longer GGGCTA arrays fold into G4 and into hairpins. We also demonstrate that replication protein A (RPA) efficiently binds to GGGCTA repeats structured into G4 but poorly binds to GGGCTA repeats structured into hairpins. Our results (along with results obtained with a more stable variant motif) suggest that GGGCTA hairpins are at the origin of GGGCTA length-dependent instability. They also suggest, as working hypothesis, that failure of efficient binding of RPA to GGGCTA structured into hairpins might be involved in the mechanism of GGGCTA array instability. On the basis of our present and past studies about telomeric G4 and their interaction with RPA, we propose an original point of view about telomeric G4 and the evolution of telomeric motifs.  相似文献   
99.

Background  

The aim of this study was to evaluate long-term platinum retention in patients treated with cisplatin and oxaliplatin.  相似文献   
100.
Bone marrow stromal cells (BMSC) have attracted interest through their possible use for cell therapy in neurological diseases. Recent reports demonstrated that these cells are able to migrate and have potential for neuronal differentiation after transplantation into brain parenchyma. The objective of this work was determine whether rat BMSC express NGF and GDNF, in order to study its potential application for treatment of neurodegenerative diseases. BMSC were harvested from male rats and cultured in DMEM supplemented with 20% fetal bovine serum. At passage 6 the total RNA was isolated using TriZol reactive. RT-PCRs to evaluate the expression of NGF and GDNF using specific primers were carried out. Our results indicate that rat BMSC have potential to produce NGF and GDNF. We have not found any report in favor of GDNF or NGF production from rat BMSC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号