首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   191篇
  2021年   17篇
  2018年   19篇
  2017年   14篇
  2016年   23篇
  2015年   36篇
  2014年   55篇
  2013年   71篇
  2012年   73篇
  2011年   75篇
  2010年   50篇
  2009年   31篇
  2008年   71篇
  2007年   46篇
  2006年   64篇
  2005年   58篇
  2004年   59篇
  2003年   52篇
  2002年   37篇
  2001年   45篇
  2000年   51篇
  1999年   53篇
  1998年   24篇
  1997年   17篇
  1996年   23篇
  1995年   25篇
  1994年   33篇
  1993年   27篇
  1992年   46篇
  1991年   41篇
  1990年   41篇
  1989年   40篇
  1988年   41篇
  1987年   41篇
  1986年   25篇
  1985年   28篇
  1984年   27篇
  1983年   24篇
  1982年   20篇
  1981年   17篇
  1980年   17篇
  1979年   19篇
  1978年   20篇
  1977年   15篇
  1976年   21篇
  1975年   16篇
  1974年   18篇
  1972年   14篇
  1970年   14篇
  1968年   13篇
  1966年   12篇
排序方式: 共有1861条查询结果,搜索用时 46 毫秒
111.
DNA synthesis was examined in cultures of growing WI38 and MRC5 cells made permeable to deoxyribonucleotides. Cells from late passage cultures showed a reduced rate of deoxythymidine triphosphate (dTTP) uptake as compared to cells from early- to mid-passage cultures. This reduction became evident earlier in WI38 cultures (passage 33) than in MRC5 cultures (passage 41). Although this reduced rate of incorporation appeared to be primarily due to a reduced percentage of replicating (S phase) cells in later passage cultures, some effect on the rate of DNA synthesis in replicating cells was also evident.  相似文献   
112.
Splenic lymphocytes from chickens infected with reticuloendotheliosis virus (REV) are cytostatically impaired in their ability to undergo mitogen-induced blastogenesis ([3H]TdR uptake and proliferation), but are fully capable of eliciting cytotoxic reactions against allogeneic, 51Chromium-labeled chicken erythrocytes. Spleen cells from birds with reticuloendotheliosis (REs) are able to suppress DNA synthesis of normal splenic lymphocytes (Ns), but are unable to inhibit 1[3H]TdR uptake by chick embryo fibroblasts. The suppression of the Ns mitogenic response is not restricted by major histocompatibility (B-locus) differences between populations of REs suppressor and Ns target cells. Moreover, infection of birds with an attenuated form of REV, which replicates in the host but does not cause tumorigenesis, also leads to suppression of phytohemagglutinin-induced, [3H]TdR uptake by host lymphocytes. These results are discussed in terms of the interaction between viral-infected/transformed cells and host defense mechanisms.  相似文献   
113.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   
114.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   
115.
The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20–24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.  相似文献   
116.
The specific resistivity of the axoplasm of giant axons of squid and Myxicola was measured utilizing a single metal microelectrode subjected to alternating current in a circuit in which the voltage output varies with the conductivity of the thin layer of fluid at the exposed electrode tip. The average specific resistivity of stellar axons of Loligo pealei was 31 omegacm (1.55 times seawater [X SW]) while for Loligo opalescens it was 32 omegacm (1.30 X SW). Smaller giant axons had a higher average resistivity. Myxicola giant axons had a resistivity of 68 omegacm (2.7 X SW) in normal seawater, and 53 omegacm (2.1 X SW) in a hypertonic high-Mg++ seawater. The temperature dependence of squid axon resistivity does not differ from that of an equally conductive dilution of seawater.  相似文献   
117.
Low concentrations (10(-5) to 10(-8) M) of 2-mercaptoethanol (2-ME) greatly enhance the proliferation of allogeneic cells in the rat mixed lymphocyte culture (MLC). Studies were undertaken to determine the mode of action of 2-ME. MLC proliferation can occur in the absence of serum proteins (fetal calf serum, FCS) only if 2-ME is present; however, a synergistic effect is present with FCS plus 2-ME, with a 3-fold increase in 3HTdR incorporation with FCS concentrations as low as 0.1%. Kinetic studies show no shift in the peak of proliferation (92 hr) when comparing cultures with and without 2-ME; however, 2-ME-supplemented cultures have significant 3HTdR uptake at 24 hr, and the peak amount of uptake at 92 hr is two to four times higher. Delayed addition of 2-ME until 92 and 166 hr produces a further increase in 3HTdR uptake, indicating that the entire effect is not expressed at the time of allogeneic recognition. L-ascorbic acid, another reducing agent which lacks sulfhydryl groups, elicits a much lower effect on DNA synthesis than does 2-ME. The cytotoxicity of cells harvested from MLC supplemented with 2-ME is increased without loss of target specificity, whereas the same concentration of 2-ME has no direct effect upon the cytotoxicity assay except at higher concentrations where 2-ME suppresses cytotoxicity.  相似文献   
118.
Morphogenesis of the labyrinthine part of the chorioallantoic placenta of the golden hamster between day 10 of gestation and term (day 16) was studied by light and electron microscopy. During this period the labyrinth increases greatly in both size and complexity. Trabeculae of the labyrinth, thin partitions composed of trophoblastic tissue and fetal capillaries which delimit the maternal blood spaces, apparently proliferate both by appositional and interstitial growth. From the time of its formation (day 9 of gestation) until term the labyrinth is hemotrichorial in organization (i.e. three layers of trophoblast separate maternal blood from fetal capillaries). Both the inner and intermediate layers of trophoblast (layers III and II, respectively) are syncytial. The outer trophoblastic layer (III), which is in direct contact with maternal blood, remains cellular, although many of its component cells grow to giant cell dimensions ("labyrinthine giant cells"). Between the tenth and fourteenth days of gestation the anatomical barrier to diffusion between maternal and fetal blood is progressively reduced. This is accomplished both by gradual attenuation of the trophoblastic layers and fetal capillary endothelium and by the formation of discontinuities (gaps) in layer I, and diaphragmed fenestrae in fetal capillary endothelium. The labyrinthine placental barrier is fully developed and probably attains maximal functional efficiency by the fourteenth day of gestation. Late in the fifteenth day of gestation, a few hours before parturition, distinct degenerative changes are apparent in the trophoblastic layers and fetal capillaries of the trabeculae. The factors responsible for initiation these degenerative changes and the onset of parturition are still controversial.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号