首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7434篇
  免费   588篇
  国内免费   17篇
  8039篇
  2022年   63篇
  2021年   100篇
  2020年   59篇
  2019年   77篇
  2018年   81篇
  2017年   82篇
  2016年   200篇
  2015年   291篇
  2014年   327篇
  2013年   400篇
  2012年   472篇
  2011年   471篇
  2010年   320篇
  2009年   265篇
  2008年   398篇
  2007年   355篇
  2006年   366篇
  2005年   340篇
  2004年   302篇
  2003年   333篇
  2002年   304篇
  2001年   89篇
  2000年   69篇
  1999年   72篇
  1998年   67篇
  1997年   69篇
  1996年   46篇
  1995年   48篇
  1994年   63篇
  1993年   57篇
  1992年   80篇
  1991年   61篇
  1990年   54篇
  1989年   50篇
  1988年   50篇
  1987年   48篇
  1985年   44篇
  1984年   72篇
  1983年   50篇
  1982年   60篇
  1981年   68篇
  1980年   66篇
  1979年   55篇
  1978年   77篇
  1977年   60篇
  1976年   60篇
  1975年   48篇
  1974年   38篇
  1973年   51篇
  1972年   38篇
排序方式: 共有8039条查询结果,搜索用时 0 毫秒
101.
Traumatic brain injury due to primary blast loading has become a signature injury in recent military conflicts and terrorist activities. Extensive experimental and computational investigations have been conducted to study the interrelationships between intracranial pressure response and intrinsic or ‘input’ parameters such as the head geometry and loading conditions. However, these relationships are very complicated and are usually implicit and ‘hidden’ in a large amount of simulation/test data. In this study, a data mining method is proposed to explore such underlying information from the numerical simulation results. The heads of different species are described as a highly simplified two-part (skull and brain) finite element model with varying geometric parameters. The parameters considered include peak incident pressure, skull thickness, brain radius and snout length. Their interrelationship and coupling effect are discovered by developing a decision tree based on the large simulation data-set. The results show that the proposed data-driven method is superior to the conventional linear regression method and is comparable to the nonlinear regression method. Considering its capability of exploring implicit information and the relatively simple relationships between response and input variables, the data mining method is considered to be a good tool for an in-depth understanding of the mechanisms of blast-induced brain injury. As a general method, this approach can also be applied to other nonlinear complex biomechanical systems.  相似文献   
102.
103.
Helper T cell differentiation is a key process in the regulation of adaptive immune responses. Here, mouse Th1 and Th2 cells are profiled using high‐throughput proteomics to increase the understanding of the molecular biology of Th differentiation to support the design of prophylactic and therapeutic intervention strategies for (infectious) diseases. Protein profiling of Th1/Th2 differentiated cells results in the quantification of almost 6000 proteins of which 41 are differentially expressed at FDR < 0.1, and 19 at the FDR < 0.05 level, respectively. Differential protein expression analysis identifies a number of the expected canonical Th differentiation markers, and gene set analysis using the REACTOME database and a hypergeometric test (FDR < 0.05) confirms that helper T cell pathways are the top sets that are differentially expressed. Additionally, by network analysis, many differentially expressed proteins are associated with the Th1 and Th2 pathways. Data are available via PRIDE database with identifier PXD004532.  相似文献   
104.
Aging is a major risk factor of intervertebral disc degeneration and a leading cause of back pain. Pathological changes associated with disc degeneration include the absence of large, vacuolated and reticular‐shaped nucleus pulposus cells, and appearance of smaller cells nested in lacunae. These small nested cells are conventionally described as chondrocyte‐like cells; however, their origin in the intervertebral disc is unknown. Here, using a genetic mouse model and a fate mapping strategy, we have found that the chondrocyte‐like cells in degenerating intervertebral discs are, in fact, nucleus pulposus cells. With aging, the nucleus pulposus cells fuse their cell membranes to form the nested lacunae. Next, we characterized the expression of sonic hedgehog (SHH), crucial for the maintenance of nucleus pulposus cells, and found that as intervertebral discs age and degenerate, expression of SHH and its target Brachyury is gradually lost. The results indicate that the chondrocyte‐like phenotype represents a terminal stage of differentiation preceding loss of nucleus pulposus cells and disc collapse.  相似文献   
105.
106.
107.
The recent developments in the isolation, culturing, and cryopreservation of human hepatocytes, and the application of the cells in drug development are reviewed. Recent advances include the improvement of cryopreservation procedures to allow cell attachment, thereby extending the use of the cells to assays that requires prolong culturing such as enzyme induction studies. Applications of human hepatocytes in drug development include the evaluation of metabolic stability, metabolite profiling and identification, drug-drug interaction potential, and hepatotoxic potential. The use of intact human hepatocytes, because of the complete, undisrupted metabolic pathways and cofactors, allows the development of data more relevant to humans in vivo than tissue fractions such as human liver microsomes. Incorporation of key in vivo factors with the intact hepatocytes in vitro may help predictive human in vivo drug properties. For instance, evaluation of drug metabolism and drug-drug interactions with intact human hepatocytes in 100% human serum may eliminate the need to determine in vivo intracellular concentrations for the extrapolation of in vitro data to in vivo. Co-culturing of hepatocytes and nonhepatic primary cells from other organs in the integrated discrete multiple organ co-culture (IdMOC) may allow the evaluation of multiple organ interactions in drug metabolism and drug toxicity. In conclusion, human hepatocytes represent a critical experimental model for drug development, allowing early evaluation of human drug properties to guide the design and selection of drug candidates with a high probability of clinical success.  相似文献   
108.

Background  

Drug addiction is associated with significant disease and death, but its impact on the ageing process has not been considered. The recent demonstration that many of the items available in routine clinical pathology have applicability as biomarkers of the ageing process implies that routine clinical laboratory parameters would be useful as an initial investigation of this possibility.  相似文献   
109.
The vast repertoire of toxic fungal secondary metabolites has long been assumed to have an evolved protective role against fungivory. It still remains elusive, however, whether fungi contain these compounds as an anti-predator adaptation. We demonstrate that loss of secondary metabolites in the soil mould Aspergillus nidulans causes, under the attack of the fungivorous springtail Folsomia candida, a disadvantage to the fungus. Springtails exhibited a distinct preference for feeding on a mutant deleted for LaeA, a global regulator of Aspergillus secondary metabolites. Consumption of the mutant yielded a reproductive advantage to the arthropod but detrimental effects on fungal biomass compared with a wild-type fungus capable of producing the entire arsenal of secondary metabolites. Our results demonstrate that fungal secondary metabolites shape food choice behaviour, can affect population dynamics of fungivores, and suggest that fungivores may provide a selective force favouring secondary metabolites synthesis in fungi.  相似文献   
110.
The ability to culture cells has revolutionized hypothesis testing in basic cell and molecular biology research. It has become a standard methodology in drug screening, toxicology, and clinical assays, and is increasingly used in regenerative medicine. However, the traditional cell culture methodology essentially consisting of the immersion of a large population of cells in a homogeneous fluid medium and on a homogeneous flat substrate has become increasingly limiting both from a fundamental and practical perspective. Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, and the medium composition, as well as the neighboring cell type in the surrounding cellular microenvironment. Additionally, microtechnology is conceptually well-suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. In this interview, Albert Folch explains these limitations, how they can be overcome with soft lithography and microfluidics, and describes some relevant examples of research in his lab and future directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号