首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   9篇
  128篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   10篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
51.
Shokhen M  Khazanov N  Albeck A 《Proteins》2011,79(3):975-985
Various mechanisms for the reversible formation of a covalent tetrahedral complex (TC) between papain and peptidyl aldehyde inhibitors were simulated by DFT calculations, applying the quantum mechanical/self consistent reaction field (virtual solvent) [QM/SCRF(VS)] approach. Only one mechanism correlates with the experimental kinetic data. The His–Cys catalytic diad is in an N/SH protonation state in the noncovalent papain–aldehyde Michaelis complex. His159 functions as a general base catalyst, abstracting a proton from the Cys25, whereas the activated thiolate synchronously attacks the inhibitor's carbonyl group. The final product of papain inhibition is the protonated neutral form of the hemithioacetal TC(OH), in agreement with experimental data. The predicted activation barrier g = 5.2 kcal mol?1 is close to the experimental value of 6.9 kcal mol?1. An interpretation of the experimentally observed slow binding effect for peptidyl aldehyde inhibitors is presented. The calculated g is much lower than the rate determining activation barrier of hemithioacetal formation in water, g, in agreement with the concept that the preorganized electrostatic environment in the enzyme active site is the driving force of enzyme catalysis. We have rationalized the origin of the acidic and basic pKa's on the k2/KS versus pH bell‐shaped profile of papain inhibition by peptidyl aldehydes. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
52.
The early adaptive evolution of calmodulin   总被引:7,自引:0,他引:7  
Interaction between gene duplication and natural selection in molecular evolution was investigated utilizing a phylogenetic tree constructed by the parsimony procedure from amino acid sequences of 50 calmodulin- family protein members. The 50 sequences, belonging to seven protein lineages related by gene duplication (calmodulin itself, troponin-C, alkali and regulatory light chains of myosin, parvalbumin, intestinal calcium-binding protein, and glial S-100 phenylalanine-rich protein), came from a wide range of eukaryotic taxa and yielded a denser tree (more branch points within each lineage) than in earlier studies. Evidence obtained from the reconstructed pattern of base substitutions and deletions in these ancestral loci suggests that, during the early history of the family, selection acted as a transforming force on expressed genes among the duplicates to encode molecular sites with new or modified functions. In later stages of descent, however, selection was a conserving force that preserved the structures of many coadapted functional sites. Each branch of the family was found to have a unique average tempo of evolutionary change, apparently regulated through functional constraints. Proteins whose functions dictate multiple interaction with several other macromolecules evolved more slowly than those which display fewer protein-protein and protein-ion interactions, e.g., calmodulin and next troponin-C evolved at the slowest average rates, whereas parvalbumin evolved at the fastest. The history of all lineages, however, appears to be characterized by rapid rates of evolutionary change in earlier periods, followed by slower rates in more recent periods. A particularly sharp contrast between such fast and slow rates is found in the evolution of calmodulin, whose rate of change in earlier eukaryotes was manyfold faster than the average rate over the past 1 billion years. In fact, the amino acid replacements in the nascent calmodulin lineage occurred at residue positions that in extant metazoans are largely invariable, lending further support to the Darwinian hypothesis that natural selection is both a creative and a conserving force in molecular evolution.   相似文献   
53.

Background

Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.

Results

We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies.

Conclusions

The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.  相似文献   
54.
55.
Here we describe the crystal structure of the N-terminal domain of the FK506-binding protein (FKBP) from wheat (wFKBP73), which is the first structure presenting three FK domains (wFK73_1, wFK73_2 and wFK73_3). The crystal model includes wFK73_2 and wFK73_3 domains and only part of the wFK73_1 domain. The wFK73_1 domain is responsible for binding FK506 and for peptidyl prolyl cis/trans isomerase (PPIase) activity, while the wFK73_2 and wFK73_3 domains lack these activities. A structure-based sequence comparison demonstrated that the absence of a large enough hydrophobic pocket important for PPIase activity, and of the conserved residues necessary for drug binding in the wFK73_2 and wFK73_3 domains explains the lack of these activities in these domains. Sequence and structural comparison between the three wFKBP73 domains suggest that the wFK73_2 domain is the most divergent. A structural comparison of the FK domains of wFKBP73 with other FKBPs containing more than one FK domain, revealed that while the overall architecture of each of the three FK domains displays a typical FKBP fold, their relative arrangement in space is unique and may have important functional implications. We suggest that the existence of FKBPs with three FK domains offers additional interactive options for these plant proteins enlarging the overall regulatory functions of these proteins.  相似文献   
56.
57.
A general platform for antibody purification utilizing free nonimmobilized Protein A modified with the strong metal chelator catechol (ProA-CAT) and Fe3+ ions is presented. The mechanism of purification requires formation and precipitation of macro-complexes composed of [ProA-CAT:IgG:Fe3+]. Target IgGs are eluted directly from the precipitates (i.e. pellets) at pH 3 in high yields (71-80%) and high purity (>95%), without dissociating the [ProA-CAT:Fe3+] insoluble macro-complex.  相似文献   
58.
59.
Introduction – The obesity pandemic is multifactorial. Nutritional, pharmacologic and surgical interventions are limited in reach and efficacy, raising need for new therapeutics. Aims – Characterization of anorexigenic and cognitive effect and central mechanism of action of novel N-acylethanolamide derivatives. Methods – Sabra mice divided to similar experimental groups, injected IP with: oleyl-L-leucinolamide ( 1 A ), linoleyl-L-leucinolamide ( 4 A ), linoleyl-L-valinolamide ( 5 A ), oleyl-oxycarbonyl-L-valinolamide ( 1 B ), oleyl-oxycarbonyl-D-valinolamide ( 2 B ), oleylamine-carbonyl-L-valinolamide ( 3 B ), oleylamine-carbonyl-D-valinolamide ( 4 B ), and oleyl-L-hydroxyvalineamide ( 5 B ). Control group with vehicle. Body weight and food consumption followed for 39 days. Motor activity and cognitive function by open field test and eight-arm maze. Mice sacrificed and mechanism of action investigated by qPCR. The genes analyzed involved in energy balance and regulation of appetite. Catecholamines and serotonin evaluated. Results – Compounds 1 A , 5 A , 1 B – 4 B , caused significant weight loss of 4.2–5.6 % and 5 A , 1 B – 4 B , improved cognitive function following 8 i. p. injections of 1 mg/kg during 39 days, by different mechanisms. 5 A , 3 B and 4 B decreased food consumption, whereas 1 A , 5 A and 2 B increased motor activity. 1 A , 4 A , 1 B and 3 B elevated SIRT-1, associated with survival. POMC upregulated by 1 B and 2 B , CART by 1 B , 2 B and 1 A . NPY and CAMKK2 downregulated by 5 A . 4 B enhanced 5-HT levels. 4 A , 5 A , 1 B , 4 B , 5 B decreased FAAH, showing long lasting effect. Conclusions – These new compounds might be developed for the treatment of obesity and for improved cognitive function.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号