首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   13篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1983年   1篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
21.
The highly conservedSaccharomyces cerevisiaeRAD51 protein functions in both mitotic and meiotic homologous recombination and in double-strand break repair. Screening of the public cDNA sequence database forRAD51-like genes led to the identification of a partial sequence from a breast tissue library present in the I.M.A.G.E. (Integrated Molecular Analysis of Genes and their Expression) collection. An extended 1764-bp cDNA clone encoding an open reading frame of 350 amino acids was isolated. This clone showed significant amino acid identity with other human RAD51 homologs. The new homolog, namedRAD51B,was mapped to human chromosome 14q23–q24.2 using a panel of human–hamster somatic cell hybrids and fluorescencein situhybridization. Northern blot analysis demonstrated thatRAD51BmRNA is widely expressed and most abundant in tissues active in recombination. Functions associated with known RAD51 homologs suggest a role for RAD51B in meiotic recombination and/or recombinational repair.  相似文献   
22.
23.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
24.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   
25.
Sipuleucel-T treatment is associated with a significant and consistent survival benefit in patients with metastatic castrate-resistant prostate cancer. Most adverse events are infusion related, manageable, and of short duration. Early screening and diagnosis of metastatic disease is important, as the greatest survival benefit may occur in patients with a lower disease burden. The short duration of sipuleucel-T treatment facilitates the use of subsequent therapies. Sipuleucel-T is now being used in the clinic for patients with a lower disease burden. We present our own experience with the use of sipuleucel-T in the setting of a large urology practice.Key words: Metastatic castrate-resistant prostate cancer, Immunotherapy, Sipuleucel-T, Clinical practiceImmunotherapies are designed to redirect the patient’s immune system to recognize and remove cancerous cells. Sipuleucel-T was the first autologous cellular immunotherapy to be approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of asymptomatic or minimally symptomatic, metastatic castrate-resistant prostate cancer (mCRPC).1,2 Other immunotherapies, such as vaccines with different actions (GVAX and PSATRICOM), anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4; ipilimumab), and anti-PD-L1 or -L2 monoclonal antibodies (pidilizumab), are in late-stage clinical development for prostate cancer and may provide clinicians and patients with additional future treatment options. This article provides clinicians with information about the best practices for sipuleucel-T treatment in the clinic, based on currently available data and our experience in a community practice.  相似文献   
26.

Background  

Pathway-targeted or low-density arrays are used more and more frequently in biomedical research, particularly those arrays that are based on quantitative real-time PCR. Typical QPCR arrays contain 96-1024 primer pairs or probes, and they bring with it the promise of being able to reliably measure differences in target levels without the need to establish absolute standard curves for each and every target. To achieve reliable quantification all primer pairs or array probes must perform with the same efficiency.  相似文献   
27.
28.
29.
Abstract: Microtubule-associated protein 2 (MAP-2) is an abundant neuronal cytoskeletal protein that binds to tubulin and stabilizes microtubules. Using fusion protein constructs we have defined the epitopes of 10 monoclonal antibodies (mAbs) to discrete regions of human MAP-2. Proteins were expressed in pATH vectors. After electrophoresis, immunoblotting was performed. By western blot analysis five of the mAbs (AP-14, AP-20, AP-21, AP-23, and AP-25) share epitopes with only the high molecular weight isoforms (MAP-2a, MAP-2b); two of the mAbs (AP-18 and tau 46) recognize MAP-2a, MAP-2b, and MAP-2c. Although AP-18 immunoreactivity was detected within heat-stable protein homogenates isolated from a human neuroblastoma cell line MSN, fusion protein constructs encompassing human MAP-2 were negative, suggesting that the AP-18 epitope is phosphorylated. Furthermore, AP-18 immunoreactivity was lost after alkaline phosphatase treatment of heat-stable protein preparations from MSN cells. Four of the mAbs (322, 636, 635, and 39) recognize epitopes located within amino acids 169–219 of human MAP-2. AP-21 maps to a region between amino acids 553 and 645. AP-23 maps between amino acids 645 and 993, whereas AP-20, AP-14, and AP-25 map between amino acids 995 and 1332. Expression of the region of MAP-2 between amino acids 1787 and 1824 was positive to tau 46.  相似文献   
30.
zeta-Crystallin is a novel nicotinamide adenine dinucleotide phosphate:quinone reductase, present at enzymatic levels in various tissues of different species, which is highly expressed in the lens of some hystricomorph rodents and camelids. We report here the complementary DNA (cDNA) cloning of zeta-crystallin from liver libraries in guinea pig (Cavia porcellus), where zeta-crystallin is highly expressed in the lens, and in the laboratory mouse (Mus musculus), where expression in the lens occurs only at enzymatic levels. A 5' untranslated sequence different from the one previously reported for the guinea pig lens cDNA was found in these clones. We also report the isolation of genomic clones including the complete guinea pig zeta-crystallin gene and the 5' region of this gene in mouse. These results show the presence of two promoters in the guinea pig zeta-crystallin gene, one responsible for expression at enzymatic levels and the other responsible for the high expression in the lens. The guinea pig lens promoter is not present in the mouse gene. This is the first example in which the recruitment of an enzyme as a lens crystallin can be explained by the acquisition of an alternative lens- specific promoter.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号