首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   70篇
  2023年   13篇
  2022年   16篇
  2021年   33篇
  2020年   27篇
  2019年   31篇
  2018年   46篇
  2017年   38篇
  2016年   43篇
  2015年   76篇
  2014年   59篇
  2013年   80篇
  2012年   114篇
  2011年   72篇
  2010年   48篇
  2009年   46篇
  2008年   61篇
  2007年   41篇
  2006年   31篇
  2005年   44篇
  2004年   41篇
  2003年   34篇
  2002年   20篇
  2001年   19篇
  2000年   15篇
  1999年   16篇
  1998年   3篇
  1997年   6篇
  1995年   11篇
  1993年   5篇
  1992年   6篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   7篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1967年   3篇
  1966年   3篇
  1965年   2篇
排序方式: 共有1181条查询结果,搜索用时 15 毫秒
81.
82.
Cells polarize to a single front and rear to achieve rapid actin-based motility, but the mechanisms preventing the formation of multiple fronts are unclear. We developed embryonic zebrafish keratocytes as a model system for investigating establishment of a single axis. We observed that, although keratocytes from 2 d postfertilization (dpf) embryos resembled canonical fan-shaped keratocytes, keratocytes from 4 dpf embryos often formed multiple protrusions despite unchanged membrane tension. Using genomic, genetic, and pharmacological approaches, we determined that the multiple-protrusion phenotype was primarily due to increased myosin light chain kinase (MLCK) expression. MLCK activity influences cell polarity by increasing myosin accumulation in lamellipodia, which locally decreases protrusion lifetime, limiting lamellipodial size and allowing for multiple protrusions to coexist within the context of membrane tension limiting protrusion globally. In contrast, Rho kinase (ROCK) regulates myosin accumulation at the cell rear and does not determine protrusion size. These results suggest a novel MLCK-specific mechanism for controlling cell polarity via regulation of myosin activity in protrusions.  相似文献   
83.
84.
Tumor suppressor p53 plays a crucial antiviral role and targeting of p53 by viral proteins is a common mechanism involved in virus oncogenesis. The activity of p53 is tightly regulated at the post-translational levels through a myriad of modifications. Among them, modification of p53 by SUMO has been associated with the onset of cellular senescence. Kaposi´s sarcoma-associated herpesvirus (KSHV) expresses several proteins targeting p53, including the latent protein LANA2 that regulates polyubiquitylation and phosphorylation of p53. Here we show that LANA2 also inhibits the modification of p53 by SUMO2. Furthermore, we show that the reduction of p53-SUMO2 conjugation by LANA2, as well as the p53-LANA2 interaction, both require the SUMOylation of the viral protein and its interaction with SUMO or SUMOylated proteins in a non-covalent manner. Finally, we show that the control of p53-SUMO2 conjugation by LANA2 correlates with its ability to inhibit SUMO2- and type I interferon-induced senescence. These results highlight the importance of p53 SUMOylation in the control of virus infection and suggest that viral oncoproteins could contribute to viral infection and cell transformation by abrogating p53 SUMOylation.  相似文献   
85.
86.
In a previous paper we identified several 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-sulfonamides that displayed inhibitory effects toward selected carbonic anhydrase isozymes at micromolar concentration. In order to deepen the structure-activity relationships (SARs) and identify novel compounds with improved activity, we synthesized a series of monomethoxy analogues of the previously investigated dimethoxy derivatives. The evaluation of biological profile has been focused on in vitro effects against several CA isoforms. The new monomethoxy derivatives showed higher hCA inhibitory effects against several isoforms compared to the dimethoxy analogues. Particularly, some of these compounds (e.g., 1b and 1h) showed low nanomolar K(I) values and excellent selectivity for hCA IX and hCA XIV versus hCA I and II inhibition.  相似文献   
87.
We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and S?o Bento in the Brazilian State of Maranh?o. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through S?o Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms.  相似文献   
88.
Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.  相似文献   
89.
Apoptotic cell death has been observed in many in vivo and in vitro models of ischemia. However, the molecular pathways involved in ischemia-induced apoptosis remain unclear. We have examined the role of Bcl-2 family of proteins in mediating apoptosis of PC12 cells exposed to the conditions of oxygen and glucose deprivation (OGD) or OGD followed by restoration of oxygen and glucose (OGD-restoration, OGD-R). OGD decreased mitochondrial membrane potential and induced necrosis of PC12 cells, which were both prevented by the overexpression of Bcl-2 proteins. OGD-R caused apoptotic cell death, induced cytochrome C release from mitochondria and caspase-3 activation, decreased mitochondrial membrane potential, and increased levels of pro-apoptotic Bax translocated to the mitochondrial membrane, all of which were reversed by overexpression of Bcl-2. These results demonstrate that the cell death induced by OGD and OGD-R in PC12 cells is potentially mediated through the regulation of mitochondrial membrane potential by the Bcl-2 family of proteins. It also reveals the importance of developing therapeutic strategies for maintaining the mitochondrial membrane potential as a possible way of reducing necrotic and apoptotic cell death that occurs following an ischemic insult.  相似文献   
90.
Saposin C is a lysosomal, membrane-binding protein that acts as an activator for the hydrolysis of glucosylceramide by the enzyme glucocerebrosidase. We used high-resolution NMR to determine the three-dimensional solution structure of saposin C in the presence of the detergent sodium dodecyl sulfate (SDS). This structure provides the first representation of membrane bound saposin C at the atomic level. In the presence of SDS, the protein adopts an open conformation with an exposed hydrophobic pocket. In contrast, the previously reported NMR structure of saposin C in the absence of SDS is compact and contains a hydrophobic core that is not exposed to the solvent. NMR data indicate that the SDS molecules interact with the hydrophobic pocket. The structure of saposin C in the presence of SDS is very similar to a monomer in the saposin B homodimer structure. Their comparison reveals possible similarity in the type of protein/lipid interaction as well as structural components differentiating their quaternary structures and functional specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号