首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   62篇
  2023年   11篇
  2022年   14篇
  2021年   31篇
  2020年   22篇
  2019年   28篇
  2018年   44篇
  2017年   35篇
  2016年   39篇
  2015年   70篇
  2014年   54篇
  2013年   75篇
  2012年   98篇
  2011年   61篇
  2010年   45篇
  2009年   41篇
  2008年   52篇
  2007年   34篇
  2006年   22篇
  2005年   34篇
  2004年   36篇
  2003年   27篇
  2002年   19篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   10篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1967年   2篇
  1959年   1篇
排序方式: 共有993条查询结果,搜索用时 234 毫秒
991.
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.  相似文献   
992.
Engagement of DNA polymerases during apoptosis   总被引:3,自引:0,他引:3  
DNA replicative and repair machinery was investigated by means of different techniques, including in vitro nuclear enzymatic assays, immunoelectron microscopy and confocal microscopy, in apoptotic cell lines such as HL-60 treated with methotrexate, P815 and K562 exposed to low temperatures and Friend cells exposed to ionizing radiation. The results showed a shift of DNA polymerase α and β activities. DNA polymerase α, which in controls was found to be the principal replicative enzyme driving DNA synthesis, underwent, upon apoptosis, a large decrease of its activity being replaced by DNA polymerase β which is believed to be associated with DNA repair. Such a modulation was concomitant with a topographical redistribution of both DNA polymerase α and the incorporation of BrdUrd throughout the nucleus. Taken together, these results indicate the occurrence of a dramatic response of the DNA machinery, through a possible common or at least similar behaviour when different cell lines are triggered to apoptosis. Although this possibility requires further investigation, these findings suggest an extreme attempt of the cell undergoing apoptosis to preserve its nuclear environment by switching on a repair/defence mechanism during fragmentation and chromatin margination.  相似文献   
993.
We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.

A chemical screen to evaluate how 4100 drugs modulate translation rates confirms mTOR as the main pathway regulating translation and reveals that sphingosine kinase inhibitors downregulate translation via activation of the ER-stress response. Sphingosine kinase inhibitors, including one in clinical trials, activate stress responses and kill cells independently of the cognate target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号