首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   940篇
  免费   62篇
  2023年   13篇
  2022年   21篇
  2021年   31篇
  2020年   22篇
  2019年   28篇
  2018年   44篇
  2017年   35篇
  2016年   39篇
  2015年   70篇
  2014年   54篇
  2013年   75篇
  2012年   98篇
  2011年   61篇
  2010年   45篇
  2009年   41篇
  2008年   52篇
  2007年   34篇
  2006年   22篇
  2005年   34篇
  2004年   36篇
  2003年   27篇
  2002年   19篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   10篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1967年   2篇
  1959年   1篇
排序方式: 共有1002条查询结果,搜索用时 15 毫秒
991.
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.  相似文献   
992.
993.
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.  相似文献   
994.
995.
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short‐lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1‐cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk‐target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1‐cyclin levels and activity. Cdk‐dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.  相似文献   
996.
Glycogen synthase kinase‐3 (GSK3) is an important signalling protein in the brain and modulates different forms of synaptic plasticity. Neuronal functions of GSK3 are typically attributed to one of its two isoforms, GSK3β, simply because of its prevalent expression in the brain. Consequently, the importance of isoform‐specific functions of GSK3 in synaptic plasticity has not been fully explored. We now directly address this question for NMDA receptor‐dependent long‐term depression (LTD) in the hippocampus. Here, we specifically target the GSK3 isoforms with shRNA knock‐down in mouse hippocampus and with novel isoform‐selective drugs to dissect their roles in LTD. Using electrophysiological and live imaging approaches, we find that GSK3α, but not GSK3β, is required for LTD. The specific engagement of GSK3α occurs via its transient anchoring in dendritic spines during LTD induction. We find that the major GSK3 substrate, the microtubule‐binding protein tau, is required for this spine anchoring of GSK3α and mediates GSK3α‐induced LTD. These results link GSK3α and tau in a common mechanism for synaptic depression and rule out a major role for GSK3β in this process.  相似文献   
997.
AimRadiation therapy (RT) is a standard therapeutic option for prostate cancer (PC). In the last decades, several innovative technology applications have been introduced. 3-Dimensional conformal RT, volumetric/rotational intensity modulated RT associated or not with image-guided RT, are becoming largely diffused in the treatment of PC.BackgroundConsidering that PC could have a low α/β ratio, similar to late-reacting normal tissues, it could also be highly responsive to fraction size. Thus, the reduction of the number of fractions and the increase of the dose/fraction seem to be reasonable choices in the treatment of this cancer. This review reported the technology evolution, the radiobiological and the clinical data about the role of extreme hypofractionated RT in the treatment approach of PC patients.Materials and methodsMedline search and analysis of published studies containing key words: prostate cancer, radiotherapy, stereotactic radiotherapy.ResultsRecent technological developments, combined with an improved knowledge of the radiobiological models in favor of a high sensitivity of PC to larger fraction sizes are opening a new scenario in its treatment, reporting favorable efficacy and acceptable toxicity, despite short follow-up.ConclusionThus, thanks to technological improvement and the recent radiobiological data, “extreme hypofractionated RT” has been strongly introduced in the last years as a potential solid treatment option for PC.  相似文献   
998.
International Microbiology - Using sphygmomanometers to measure blood pressure is a common practice in the healthcare context. The disinfection and maintenance of these devices is essential in...  相似文献   
999.
Processing of large numbers smaples of plant tissue samples for molecular mapping and gene tagging requires methods that are quick, simple, and cheap, and that eventually can be automated. Organic solvents used for DNA extraction can represent a significant proportion of the overall cost. In this study we examined dichloromethane as a replacement for chloroform to be used in combination with phenol.  相似文献   
1000.
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号