首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1980年   1篇
  1978年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
31.
Biomimetic hydrolysis of DNA or RNA is of increasing importance in biotechnology and medicine. Most natural nuclease enzymes that mediate such reactions utilize metal ion cofactors. Recent progress in the design of synthetic metallonucleases has included complexes of antibiotics, peptides, nucleic acids, and other organic ligands. In this article, we review a number of synthetic catalyst systems that have been developed to achieve efficient DNA hydrolysis. Methods to evaluate their catalytic efficiencies are critically discussed, and a prognosis for future work in this area is presented.  相似文献   
32.
33.
Investigations on the role of intracellular Ca2+ ion concentration in the mechanism of development of COPD in smokers and non-smokers were carried out. The intracellular Ca2+ levels were found to be increased in human lymphocytes in patients with COPD as compared to non-smokers and smokers without COPD. The investigations reveal an association in altered intracellular Ca2+ regulation in lymphocytes and severity of COPD, by means of significant activation of Protein kinase C and inducible nitric oxide synthase (iNOS). The effect of a novel calcium channel blocker ethyl 4-(4′-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate (H-DHPM) as a potential candidate for the treatment of COPD was also investigated. H-DHPM treated cells showed a decrease in intracellular Ca2+ level as compared to the control cells. Molecular studies were carried out to evaluate the expression profile of NOS isoforms in human lymphocytes and it was shown that H-DHPM decreases the increased iNOS in COPD along with reestablishing the normal levels of endothelial nitric oxide synthase (eNOS). The results of H-DHPM were comparable with those of Amlodipine, a known calcium channel blocker. Calcium channel blocker H-DHPM proves to be a potential candidate for the treatment of COPD and further clinical studies are required to prove its role in the treatment of pulmonary hypertension (PH).  相似文献   
34.
35.
Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential.  相似文献   
36.
It is well established that periods of increased contractile activity result in significant changes in muscle structure and function. Such morphological changes as sarcomeric Z-line disruption and sarcoplasmic reticulum vacuolization are characteristic of exercise-induced muscle injury. While the precise mechanism(s) underlying the perturbations to muscle following exercise remains to be elucidated, it is clear that disturbances in Ca2+ homeostasis and changes in the rate of protein degradation occur. The resulting elevation in intracellular [Ca2+] activates the non-lysosomal cysteine protease, calpain. Because calpain cleaves a variety of protein substrates including cytoskeletal and myofibrillar proteins, calpain-mediated degradation is thought to contribute to the changes in muscle structure and function that occur immediately following exercise. In addition, calpain activation may trigger the adaptation response to muscle injury. The purpose of this paper is to: (i) review the chemistry of the calpain-calpastatin system; (ii) provide evidence for the involvement of the non-lysosomal, calcium-activated neutral protease (calpain) in the response of skeletal muscle protein breakdown to exercise (calpain hypothesis); and (iii) describe the possible involvement of calpain in the inflammatory and regeneration response to exercise.  相似文献   
37.
The requirement of large amounts of the recombinant human bone morphogenetic protein‐2 (BMP‐2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP‐2. In this study, we describe the development and optimization of a cell‐based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP‐2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP‐responsive Smad1‐driven luciferase reporter gene. LIM mineralization protein‐1 (LMP‐1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP‐2. Our previous report elucidated that the binding of LMP‐1 with the WW2 domain in Smad ubiquitin regulatory factor‐1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell‐based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP‐1, and its mutant (LMP‐1ΔSmurf1) that lacks the Smurf1‐WW2 domain‐binding motif. Both the wild type and the mutant proteins were engineered to contain an 11‐amino acid HIV‐TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell‐based reporter assay confirmed that LMP‐1 potentiates the BMP‐induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP‐1 was significantly reduced when a specific‐motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and reliability of our cell‐based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post‐translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression‐based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP‐1. Among them, we selected SVAK‐3, a compound that showed a dose‐dependent potentiation of BMP‐2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP‐1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP‐2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   
38.
Short peptide sequences known as protein transduction domains have become increasingly prevalent as tools to internalize molecules that would otherwise remain extracellular. Here, we determine whether a purified recombinant mammalian intracellular osteogenic factor delivered by a HIV-derived TAT-peptide tag is indeed capable of intracellular localization in a form accessible to interaction with other proteins. We engineered and bacterially expressed a TAT-fusion-cDNA construct of a known osteogenic factor, LIM mineralization protein-1 (LMP-1) involved in the bone morphogenetic protein (BMP) pathway that has the potential to serve as an enhancer of BMP-2 efficacy.The expressed recombinant protein contains an N-terminal (His)6-tag, a hemagglutinin(HA)-tag, and an 11-amino acid HIV-derived TAT-membrane transduction domain and was purified to homogeneity by Sephacryl S-100 molecular exclusion and Ni2+-affinity chromatography. The purified TAT–LMP-1 protein was chemically labeled with fluorescein, and its time and concentration dependent entry into rabbit blood cells was monitored by flow cytometry. We demonstrate the accumulation of TAT-tagged LMP-1 both in cytoplasmic and nuclear compartments. By performing affinity pull-down assays, we confirm our earlier findings that the recombinant TAT–LMP-1, when used as molecular bait to identify the intracellular binding proteins, interacts with Smurf1, a known binding partner of LMP-1. We also show potentiation of BMP-2 activity using the purified TAT–LMP-1 in mouse muscle C2C12 cells by assaying a heterologous luciferase-reporter construct containing multiple copies of a BMP-responsive sequence motif. Finally, we also confirm the biological activity of the purified TAT–LMP-1 by showing enhancement of BMP-2 induced increase of alkaline phosphatase mRNA and protein by RT-PCR and enzyme activity, respectively.  相似文献   
39.
Site-specific cleavage of the HIV-1 viral Rev responsive element by copper aminoglycosides is reported under physiological conditions. This bubble and stem-loop RNA structure is efficiently targeted at micromolar concentrations of complex. The specificity of cleavage of structured viral RNA relative to a non-cognate tRNAPhe of well-defined secondary and tertiary structure is demonstrated. Cleavage products from simpler substrates [diribonucleotide (ApA) and 2',3'-cyclic monophosphate ester (cAMP)] were analyzed by 31P NMR and demonstrate a hydrolytic mechanism in the absence of external redox agents. These results demonstrate copper aminoglycosides to be highly efficient chemical nucleases with a targeting capability for viral RNA and suggest a novel methodology to counter RNA viruses.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号