首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   106篇
  1452篇
  2022年   8篇
  2021年   17篇
  2020年   19篇
  2019年   12篇
  2018年   22篇
  2017年   17篇
  2016年   23篇
  2015年   51篇
  2014年   51篇
  2013年   63篇
  2012年   62篇
  2011年   89篇
  2010年   56篇
  2009年   43篇
  2008年   88篇
  2007年   69篇
  2006年   74篇
  2005年   63篇
  2004年   75篇
  2003年   54篇
  2002年   62篇
  2001年   12篇
  2000年   19篇
  1999年   19篇
  1998年   19篇
  1997年   9篇
  1996年   7篇
  1995年   11篇
  1994年   13篇
  1993年   12篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   10篇
  1988年   14篇
  1987年   7篇
  1985年   9篇
  1984年   8篇
  1983年   8篇
  1982年   12篇
  1981年   11篇
  1980年   7篇
  1978年   6篇
  1977年   6篇
  1975年   12篇
  1974年   13篇
  1971年   6篇
  1970年   8篇
  1968年   6篇
  1904年   6篇
排序方式: 共有1452条查询结果,搜索用时 0 毫秒
311.
312.
We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model.Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings.In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals.This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and morbidity arising from infection with HPAI H5N1 virus.  相似文献   
313.
We have investigated in detail the role of intra-organelle Ca2+ content during induction of apoptosis by the oxidant menadione while changing and monitoring the Ca2+ load of endoplasmic reticulum (ER), mitochondria, and acidic organelles. Menadione causes production of reactive oxygen species, induction of oxidative stress, and subsequently apoptosis. In both pancreatic acinar and pancreatic tumor AR42J cells, menadione was found to induce repetitive cytosolic Ca2+ responses because of the release of Ca2+ from both ER and acidic stores. Ca2+ responses to menadione were accompanied by elevation of Ca2+ in mitochondria, mitochondrial depolarization, and mitochondrial permeability transition pore (mPTP) opening. Emptying of both the ER and acidic Ca2+ stores did not necessarily prevent menadione-induced apoptosis. High mitochondrial Ca2+ at the time of menadione application was the major factor determining cell fate. However, if mitochondria were prevented from loading with Ca2+ with 10 μm RU360, then caspase-9 activation did not occur irrespective of the content of other Ca2+ stores. These results were confirmed by ratiometric measurements of intramitochondrial Ca2+ with pericam. We conclude that elevated Ca2+ in mitochondria is the crucial factor in determining whether cells undergo oxidative stress-induced apoptosis.Apoptosis, a mechanism of programmed cell death, usually occurs through intrinsic or extrinsic apoptotic pathways. The caspases involved in apoptosis can be split into two groups, the initiator caspases such as caspase-9 and effector caspases such as caspase-3. Effector caspases are activated by initiator caspases and mediate many of the morphological cellular changes associated with apoptosis (1).Calcium is an important signaling ion involved in the regulation of many physiological as well as pathological cellular responses (2). In the pancreas, we have shown that Ca2+ signals elicit enzyme secretion (3), apoptosis (46), and pathological intracellular activation of digestive enzymes (7). As such, there must be mechanisms in place by which the cell can differentiate between apoptotic and non-apoptotic Ca2+ signals.The spatiotemporal pattern of calcium signaling is crucial for the specificity of cellular responses. For example, repetitive cytosolic calcium spikes confined to the apical region of the pancreatic acinar cell are elicited by physiological stimulation with acetylcholine (ACh) or cholecystokinin (CCK) and result in physiological secretion of zymogen granules (8, 9). However, a sustained global increase in free cytosolic Ca2+ induced by supramaximal stimulation with CCK, which resembles prolonged hyperstimulation of pancreatic acinar cells in the pathophysiology of acute pancreatitis, can lead to premature activation of digestive enzymes and vacuole formation within the cell (1012). Alternatively, global repetitive calcium spikes induced in the pancreatic acinar cell in response to oxidant stress can lead to induction of the mitochondrial permeability transition pore (mPTP)4 and apoptosis (4, 5, 13).To understand the role of calcium in apoptosis, several investigators have examined the influence of intracellular stores on the molding of calcium signals that lead to cell death (1416). It has been well established in a range of cell types that the endoplasmic reticulum (ER) is the major intracellular calcium store required for induction of apoptosis. Pinton et al. (17) have shown that decreasing ER Ca2+ concentration with tBuBHQ increased HeLa cell survival in response to oxidant stress induced by ceramide. Scorrano and Korsmeyer (18) also observed that double knock-out Bax and Bak (pro-apoptotic proteins) mouse fibroblasts displayed a reduced resting concentration of ER Ca2+ compared with wild type and were resistant to induction of apoptosis by various stimulants, including ceramide. These important studies strongly suggest that the concentration of Ca2+ in the ER is a critical determinant of cellular susceptibility to apoptotic stimuli in the cell types studied.A key event in early apoptosis is permeabilization of the mitochondrial membrane. The mPTP is a pore whose molecular composition is still debated (19). Activation of an open pore state can result in swelling of the mitochondrial matrix and release of the apoptogenic proteins from the intermembrane space (20).One important activator of the mPTP is Ca2+ (2022), a function which implicates Ca2+ in the initiation of apoptosis (23, 24). Once Ca2+ is released from the ER into the cytoplasm, mitochondria take up part of the released Ca2+ to prevent propagation of large calcium waves (2527). This influx is followed by calcium efflux from the mitochondria back into the cytosol (28, 29). An increase in mitochondrial Ca2+ concentration in response to physiological stimuli induces increased activity of the mitochondrial respiratory chain and the synthesis of ATP to meet with increasing energy demands on the cell. When mitochondria are exposed to a pathological overload of calcium, opening of the mPTP is triggered, leading to mitochondrial dysfunction and eventually cell death. The mechanism through which calcium can trigger mPTP opening is still unclear and may involve cyclophilin D (30) and voltage-dependent anion channel (31). The mitochondria are endowed with selective and efficient calcium uptake (a calcium-selective uniporter) and release mechanisms (Ca2+/Na exchanger, Ca2+/H+ exchanger, and mPTP) (16, 29, 32, 33).Oxidant stress is a well known inducer of apoptosis in several cell types (34) and is thought to play an important role in the pathogenesis of acute pancreatitis (35). We have used the quinone compound menadione to induce oxidative stress in the pancreatic acinar cell. Menadione is metabolized by flavoprotein reductase to semiquinone and then is oxidized back to quinone, resulting in generation of superoxide anion radicals, hydrogen peroxide, and other reactive oxygen species (ROS) (36). In vivo, menadione causes depolarization and swelling of the mitochondria (37). In pancreatic acinar cells, treatment with menadione not only produces an increase in ROS, but has also been found to evoke cytosolic Ca2+ responses, mPTP opening, activation of caspases and apoptotic cell death (4, 5). When cells were pretreated with the calcium chelator BAPTA-AM, menadione was unable to induce apoptosis, indicating that oxidant stress-induced apoptosis in the pancreatic acinar cell is highly calcium-dependent. Here we show that in pancreatic acinar cells, oxidative stress-induced apoptosis is strongly dependent on the Ca2+ concentration within mitochondria at the time of ROS production.  相似文献   
314.
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.  相似文献   
315.
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.  相似文献   
316.
A posterior approach to the rectum that has been used by the authors and others recently in treating premalignant lesions at the 8 to 14 cm. level has a number of advantages.Previous objections to it have been largely overcome by present-day methods of attaining a sterile operative field and also improvements in techniques of preoperative preparation and postoperative care.There are several special situations in which this approach may theoretically be of value.  相似文献   
317.
318.
319.
320.
The bluish-black spots of lipid-containing materials stained with a saturated solution of Sudan black B in 55% ethanol were found to fade and change color to brownish-pink shades in 5 min if exposed to ultraviolet light. Spots that were exposed to daylight for 6 hr on a sunny day lost 14% of their original color intensity but the decrease was less on cloudy days. Exposure to H2S initiated fading and color change in 2 hr. Exposure to HCl vapors restored the original color but not its intensity. Spots kept in darkness and wrapped airtight showed a decline of 2.5% in color intensity after 96 hr and no obvious color change. The speed and extent of change of color and fading of the various fractions of the dye separated by means of paper chromatography were different. Heat coagulated serum proteins were stained blue with commercial Sudan black B solution in 55% ethanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号