首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2253篇
  免费   194篇
  国内免费   2篇
  2021年   35篇
  2020年   24篇
  2019年   22篇
  2018年   30篇
  2017年   35篇
  2016年   37篇
  2015年   84篇
  2014年   76篇
  2013年   112篇
  2012年   122篇
  2011年   147篇
  2010年   80篇
  2009年   55篇
  2008年   107篇
  2007年   90篇
  2006年   101篇
  2005年   87篇
  2004年   94篇
  2003年   79篇
  2002年   92篇
  2001年   44篇
  2000年   37篇
  1999年   36篇
  1998年   26篇
  1997年   17篇
  1996年   17篇
  1995年   23篇
  1994年   22篇
  1993年   17篇
  1992年   36篇
  1991年   32篇
  1990年   32篇
  1989年   35篇
  1988年   32篇
  1987年   21篇
  1986年   16篇
  1985年   22篇
  1984年   29篇
  1983年   34篇
  1982年   27篇
  1981年   20篇
  1979年   18篇
  1978年   13篇
  1977年   23篇
  1976年   18篇
  1974年   21篇
  1973年   14篇
  1972年   26篇
  1970年   14篇
  1969年   12篇
排序方式: 共有2449条查询结果,搜索用时 375 毫秒
121.
Potato leafroll poleovirus and the Colorado potato beetle (Leptinotarsa decemlineata (Say)) are major pests of potato in the USA. The US Department of Agriculture estimates that over 50% of annual insecticide use on potato is applied to control the Colorado potato beetle and aphids that transmit potato leafroll virus (PLRV). To address this issue, Russet Burbank potatoes have been genetically modified for a high level of resistance to infection and the resulting disease symptoms caused by PLRV and to feeding damage caused by the Colorado potato beetle. This resistance was achieved by the expression of the unmodified full-length replicase gene of PLRV and the cry3A insect control protein gene from Bacillus thuringiensis var. tenebrionis. Plant expression constructs containing various modifications of the PLRV replicase gene were produced during the development of this product. The genes in these constructs were a full-length unmodified replicase (open reading frame 2a/2b), an antisense orientation of the full-length cDNA, an open reading frame 1 translation of the full-length gene, and a gene truncation containing the 3 sense coding portion of the replicase gene. Growth chamber experiments demonstrated that transformation of plants with the full-length and 3 sense coding constructs substantially protected these potato plants from infection and disease symptoms caused by PLRV. The Russet Burbank potato expressing the full-length PLV replicase gene and the cry3A gene is a new potato product from NatureMark called NewLeaf Plus®.  相似文献   
122.
We previously reported that adrenomedullin (AM) decreases blood pressure following microinjection into the paraventricular nucleus of the hypothalamus (PVN) of the rat. With the use of whole cell recordings in rat hypothalamic slice preparations, we characterized the effects of AM on electrophysiologically identified PVN neurons and described the membrane events underlying such actions. AM hyperpolarized magnocellular (type I) neurons in a dose-dependent manner, a response associated with an increase in the frequency and amplitude of inhibitory postsynaptic potentials. Blockade of action potentials with tetrodotoxin (TTX) abolished AM effects on membrane potential and synaptic activity in magnocellular neurons, suggesting direct actions on inhibitory interneurons. Furthermore, blockade of inhibitory synaptic transmission with the GABA(A) receptor antagonist bicuculline methiodide also abolished AM effects on membrane potential in magnocellular neurons. In contrast, parvocellular (type II) neurons depolarized following AM receptor activation. AM effects on parvocellular neurons were dose dependent and were maintained in the presence of TTX, indicating direct effects on this population of neurons. Voltage-clamp recordings from parvocellular neurons showed AM enhances a nonselective cationic conductance, suggesting a potential mechanism through which AM influences membrane potential. These observations show clear population-specific actions of AM on separate identified groups of PVN neurons. Such effects on magnocellular neurons likely contribute to the hypotensive actions of this peptide in PVN. Although the effects on parvocellular neurons may also contribute to such cardiovascular effects of AM, it is more likely that actions on this population of PVN neurons underlie the previously demonstrated activational effects of AM on the hypothalamic-pituitary-adrenal axis.  相似文献   
123.
Phenotypic and phylogenetic studies were performed on seven unidentified gram-negative, facultatively anaerobic, coccobacillus-shaped organisms isolated from human clinical specimens. Comparative 16S rRNA gene sequencing demonstrated that four of the strains corresponded to Dysgonomonas capnocytophagoides whereas the remaining three isolates represent a new sub-line within the genus Dysgonomonas, displaying greater than 5% sequence divergence with Dysgonomonas capnocytophagoides and Dysgonomonas gadei. The three novel isolates were readily distinguished from D.capnocytophagoides and D. gadei by biochemical tests. The DNA base composition of the novel species was consistent with its assignment to the genus Dysgonomonas. Based on phylogenetic and phenotypic evidence it is proposed that the unknown species, be classified as Dysgonomonas mossii sp. nov. The type strain of Dysgonomonas mossii is CCUG 43457T (= CIP 107079T).  相似文献   
124.
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.  相似文献   
125.
Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.  相似文献   
126.
In vivo imaging of embryonic vascular development using transgenic zebrafish   总被引:24,自引:0,他引:24  
In this study we describe a model system that allows continuous in vivo observation of the vertebrate embryonic vasculature. We find that the zebrafish fli1 promoter is able to drive expression of enhanced green fluorescent protein (EGFP) in all blood vessels throughout embryogenesis. We demonstrate the utility of vascular-specific transgenic zebrafish in conjunction with time-lapse multiphoton laser scanning microscopy by directly observing angiogenesis within the brain of developing embryos. Our images reveal that blood vessels undergoing active angiogenic growth display extensive filopodial activity and pathfinding behavior similar to that of neuronal growth cones. We further show, using the zebrafish mindbomb mutant as an example, that the expression of EGFP within developing blood vessels permits detailed analysis of vascular defects associated with genetic mutations. Thus, these transgenic lines allow detailed analysis of both wild type and mutant embryonic vasculature and, together with the ability to perform large scale forward-genetic screens in zebrafish, will facilitate identification of new mutants affecting vascular development.  相似文献   
127.
The mechanical resistance of a folded domain in a polyprotein of five mutant I27 domains (C47S, C63S I27)(5)is shown to depend on the unfolding history of the protein. This observation can be understood on the basis of competition between two effects, that of the changing number of domains attempting to unfold, and the progressive increase in the compliance of the polyprotein as domains unfold. We present Monte Carlo simulations that show the effect and experimental data that verify these observations. The results are confirmed using an analytical model based on transition state theory. The model and simulations also predict that the mechanical resistance of a domain depends on the stiffness of the surrounding scaffold that holds the domain in vivo, and on the length of the unfolded domain. Together, these additional factors that influence the mechanical resistance of proteins have important consequences for our understanding of natural proteins that have evolved to withstand force.  相似文献   
128.
Cell cycle, apoptosis, and replicative senescence are all influenced by the cyclin-dependent kinase inhibitor, p21. It was previously reported that deletion of p21 in 129/Sv x C57BL/6 mixed genetic background mice induced a severe lupus-like disease, almost exclusively in females. However, we did not confirm this finding in an independently derived stock of 129/Sv x C57BL/6 p21(-/-) mice. To further address this discrepancy, we examined the effects of p21 deletion in BXSB female mice that develop late-life, mild lupus-like disease. Survival, polyclonal Igs, anti-chromatin Abs, and kidney histopathology in these mice were unremarkable and identical to wild-type littermates for up to 14 mo of age. We conclude that p21 deficiency does not promote autoimmunity even in females of a predisposed strain. The findings indicate that the use of mixed background 129/Sv x C57BL/6 mice to study effects of gene deletions in systemic autoimmunity may be confounded by the genetic heterogeneity of this cross. We suggest that studies addressing gene deletion effects in systemic autoimmunity should use sufficiently backcrossed mice to attain genetic homogeneity, include wild-type littermate controls, and preferentially use congenic inbred strains with late-life lupus predisposition to emulate the polygenic nature of this disease.  相似文献   
129.
130.
Co-localization of activated microglia and damaged neurones seen in brain injury suggests microglia-induced neurodegeneration. Activated microglia release two potential neurotoxins, excitatory amino acids and nitric oxide (NO), but their contribution to mechanisms of injury is poorly understood. Using co-cultures of rat microglia and embryonic cortical neurones, we show that inducible NO synthase (iNOS)-derived NO aloneis responsible for neuronal death from interferon gamma (IFNgamma) +lipopolysaccharide (LPS)-activated microglia. Neurones remain sensitive to NO irrespective of maturation state but, whereas blocking NMDA receptor activation with MK801 has no effect on NO-mediated toxicity to immature neurones, MK801 rescues 60-70% of neurones matured in culture for 12 days. Neuronal expression of NMDA receptors increases with maturation in culture, accounting for increased susceptibility to excitotoxins seen in more mature cultures. We show that MK801 delays the death of more mature neurones caused by the NO-donor DETA/NO indicating that NO elicits an excitotoxic mechanism, most likely through neuronal glutamate release. Thus, similar concentrations of nitric oxide cause neuronal death by two distinct mechanisms: NO acts directly upon immature neurones but indirectly, via NMDA receptors, on more mature neurones. Our results therefore extend existing evidence for NO-mediated toxicity and show a complex interaction between inflammatory and excitotoxic mechanisms of injury in mature neurones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号