首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   43篇
  266篇
  2023年   1篇
  2022年   6篇
  2021年   16篇
  2020年   15篇
  2019年   6篇
  2018年   14篇
  2017年   8篇
  2016年   12篇
  2015年   24篇
  2014年   20篇
  2013年   14篇
  2012年   24篇
  2011年   23篇
  2010年   10篇
  2009年   6篇
  2008年   14篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
51.
In this report, we present novel findings that implicate CCAAT/enhancer-binding protein (C/EBPalpha) in regulating the expression and activity of calpain 3 in vivo and data showing a new physiological substrate for calpain 3, cyclin A. Our results demonstrate that cleavage of cyclin A by calpain 3 occurs in mouse and human myeloid precursor cells. Calpain 3 cleaves cyclin A in vitro and in vivo, resulting in the production of a truncated product that lacks the N-terminal destruction box required for its degradation at the end of mitosis. The cleaved form of cyclin A retains the cyclin-dependent kinase (cdk) binding domain and forms active complexes with cdk2. Calpain 3-mediated cleavage of cyclin A is lacking in C/EBPalpha-/- mice, which are not able to produce mature granulocytes. Our data support a model in which calpain 3-mediated cleavage of cyclin A in dividing myeloid progenitor cells is important for the onset of differentiation. Deficits in this pathway in C/EBPalpha-/- mice might contribute to the failure of these mice to produce mature granulocytes. These data reveal a new pathway involving tightly controlled post-translational processing of cyclin A during differentiation of granulocytes.  相似文献   
52.
ATP is an extracellular signal for the immune system, particularly during an inflammatory response. It is sensed by the P2X7 receptor, the expression of which is upregulated by pro-inflammatory cytokines. Activation of the P2X7 receptor opens a cation-specific channel that alters the ionic environment of the cell, activating several pathways, including (i) the inflammasome, leading to production of IL-1β and IL-18; (ii) the stress-activated protein kinase pathway, resulting in apoptosis; (iii) the mitogen-activated protein kinase pathway, leading to generation of reactive oxygen and nitrogen intermediates; and (iv) phospholipase D, stimulating phagosome-lysosome fusion. The P2X7 receptor can initiate host mechanisms to remove pathogens, most particularly those that parasitise macrophages. At the same time, the P2X7 receptor may be subverted by pathogens to modulate host responses. Moreover, recent genetic studies have demonstrated significant associations between susceptibility or resistance to parasites and bacteria, and loss-of-function or gain-of-function polymorphisms in the P2X7 receptor, underscoring its importance in infectious disease.  相似文献   
53.
54.
55.
The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.  相似文献   
56.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent disorder of fatty acid oxidation with a similar prevalence to that of phenylketonuria. Affected patients present tissue accumulation of the medium-chain fatty acids octanoate (OA), decanoate (DA) and cis-4-decenoate. Clinical presentation is characterized by neurological symptoms, such as convulsions and lethargy that may develop into coma and sudden death. The aim of the present work was to investigate the in vitro effect of OA and DA, the metabolites that predominantly accumulate in MCADD, on oxidative stress parameters in rat cerebral cortex homogenates. It was first verified that both DA and OA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation) and decreased the non-enzymatic antioxidant defenses, measured by the decreased total antioxidant capacity. DA also enhanced carbonyl content and oxidation of sulfhydryl groups (protein damage) and decreased reduced glutathione (GSH) levels. We also verified that DA-induced GSH decrease and sulfhydryl oxidation were not observed when cytosolic preparations (membrane-free supernatants) were used, suggesting a mitochondrial mechanism for these actions. Our present data show that the medium-chain fatty acids DA and OA that most accumulate in MCADD cause oxidative stress in rat brain. It is therefore presumed that this pathomechanism may be involved in the pathophysiology of the neurologic symptoms manifested by patients affected by MCADD.  相似文献   
57.
Anethole is a naturally occurring aromatic oxidant, present in a variety of medicinal plant extracts, which is commonly used by the food and beverage industry. Despite its widespread occurrence and commercial use, there is currently little information regarding effects of this compound on the vasculature. Therefore the actions of anethole on the contractility of rat isolated aorta were compared with those of eugenol, and their respective isomeric forms, estragole and isoeugenol. In aortic rings precontracted with phenylephrine (PE; 1 microM), anethole (10(-6) M-10(-4) M) induced contraction in preparations possessing an intact endothelium, but not in endothelium-denuded tissues. At higher concentrations (10(-3) M-10(-2) M), anethole-induced concentration-dependent and complete relaxation of all precontracted preparations, irrespective of whether the endothelium was intact or not, an action shared by eugenol, estragole and isoeugenol. The contractile and relaxant effects of anethole in PE-precontracted preparations were not altered by L-NAME (10 microM) or indomethacin (10 microM), indicating that neither nitric oxide nor prostaglandins were involved in these actions. The mixed profile of effects was not confined to PE-mediated contraction, since similar responses were obtained to anethole when tissues were precontracted with 25 mM KCl. Anethole and estragole (10(-6)-10(-4) M), but not eugenol or isoeugenol, increased the basal tonus of endothelium-denuded aortic rings, an action that was abolished by VDCC blockers nifedipine (1 microM) and diltiazem (1 microM), or by withdrawal of extracellular Ca(2+). Our data suggest complex effects of anethole on isolated blood vessels, inducing contraction at lower doses, mediated via opening of voltage-dependent Ca(2+)-channels, and relaxant effects at higher concentrations that are shared by structural analogues.  相似文献   
58.
59.
The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1). This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号