首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8016篇
  免费   677篇
  国内免费   2篇
  2023年   17篇
  2022年   55篇
  2021年   107篇
  2020年   53篇
  2019年   98篇
  2018年   111篇
  2017年   123篇
  2016年   220篇
  2015年   274篇
  2014年   330篇
  2013年   462篇
  2012年   522篇
  2011年   513篇
  2010年   346篇
  2009年   394篇
  2008年   507篇
  2007年   499篇
  2006年   462篇
  2005年   451篇
  2004年   473篇
  2003年   482篇
  2002年   450篇
  2001年   122篇
  2000年   100篇
  1999年   130篇
  1998年   150篇
  1997年   115篇
  1996年   92篇
  1995年   97篇
  1994年   79篇
  1993年   69篇
  1992年   92篇
  1991年   72篇
  1990年   55篇
  1989年   56篇
  1988年   49篇
  1987年   29篇
  1986年   33篇
  1985年   29篇
  1984年   54篇
  1983年   20篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   34篇
  1978年   21篇
  1977年   24篇
  1976年   22篇
  1975年   20篇
  1974年   19篇
排序方式: 共有8695条查询结果,搜索用时 62 毫秒
181.
182.
The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well‐delimited regions of common species composition and environmental settings. These so‐called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two‐step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub‐Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.  相似文献   
183.
There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.  相似文献   
184.
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF‐2 and keratin 5. In vitro analysis confirmed that FGF‐2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling–Degos Disease (DDD) have already been associated with the pheomelanosome–eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age‐related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.  相似文献   
185.
186.
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species’ inherent behavioural variability. There are no functional connectivity analyses using continuous individual‐based sampling across an urban‐rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban‐rural landscape. We assessed functional connectivity by applying an individual‐based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector‐based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built‐up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man‐made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.  相似文献   
187.
The difficulties in understanding the underlying reasons of a population decline lie in the typical short duration of field studies, the often too small size already reached by a declining population or the multitude of environmental factors that may influence population trend. In this difficult context, useful demographic tools such as integrated population models (IPM) may help disentangling the main reasons for a population decline. To understand why a hoopoe Upupa epops population has declined, we followed a three step model analysis. We built an IPM structured with respect to habitat quality (approximated by the expected availability of mole crickets, the main prey in our population) and estimated the contributions of habitat‐specific demographic rates to population variation and decline. We quantified how much each demographic rate has decreased and investigated whether habitat quality influenced this decline. We tested how much weather conditions and research activities contributed to the decrease in the different demographic rates. The decline of the hoopoe population was mainly explained by a decrease in first‐year apparent survival and a reduced number of fledglings produced, particularly in habitats of high quality. Since a majority of pairs bred in habitats of the highest quality, the decrease in the production of locally recruited yearlings in high‐quality habitat was the main driver of the population decline despite a homogeneous drop of recruitment across habitats. Overall, the explanatory variables we tested only accounted for 19% of the decrease in the population growth rate. Among these variables, the effects of spring temperature (49% of the explained variance) contributed more to population decline than spring precipitation (36%) and research activities (maternal capture delay, 15%). This study shows the power of IPMs for identifying the vital rates involved in population declines and thus paves the way for targeted conservation and management actions.  相似文献   
188.
It is predicted that warmer conditions should lead to a loss of trophic levels, as larger bodied consumers, which occupy higher trophic levels, experience higher metabolic costs at high temperature. Yet, it is unclear whether this prediction is consistent with the effect of warming on the trophic structure of natural systems. Furthermore, effects of temperature at the species level, which arise through a change in species composition, may differ from those at the population level, which arise through a change in population structure. We investigate this by building species-level trophic networks, and size-structured trophic networks, as a proxy for population structure, for 18 648 stream fish communities, from 4 145 234 individual fish samples, across 7024 stream locations in France from 1980 to 2008. We estimated effects of temperature on total trophic diversity (total number of nodes), vertical trophic diversity (mean and maximum trophic level) and distribution of biomass across trophic level (correlation between trophic level and biomass) in these networks. We found a positive effect of temperature on total trophic diversity in both species- and size-structured trophic networks. We found that maximum trophic level and biomass distribution decreased in species-level and size-structured trophic networks, but the mean trophic level decreased only in size-structured trophic networks. These results show that warmer temperatures associate with a lower vertical trophic diversity in size-structured networks, and a higher one in species-level networks. This suggests that vertical trophic diversity is shaped by antagonistic effects of temperature on population structure and on species composition. Our results hence demonstrate that effects of temperature do not only differ across trophic levels, but also across levels of biological organisation, from population to species level, implying complex changes in network structure and functioning with warming.  相似文献   
189.
Systematic Parasitology - The proteocephalid genus Pseudoendorchis (Cestoda: Onchoproteocephalidea) has recently been proposed to accommodate seven species/species-level lineages of tapeworm...  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号