首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   5篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   20篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
81.
The morphology and infraciliature of the rare heterotrichid ciliate Copemetopus subsalsus Villeneuve-Brachon, 1940 were studied in live and protargol-impregnated specimens and also by scanning electron microscopy. It is characterized by a dumbbell-shaped macronucleus, a specific dorsal brush cilia, an oblique peristome, and a distinct S-shaped adoral zone of membranelles equipped with whip-shaped anterior adoral membranelles.  相似文献   
82.
83.
The well-known ciliate, Mesodinium Stein, 1863, is of great importance to marine microbial food webs and is related to the "red tides". However, it is possibly one of the most confusing ciliate taxa in terms of its systematic position: either the morphological or the molecular data excluded it from all the other known assemblages or groups. In the current work, the sequences of small subunit ribosomal RNA(SSU rR NA) genes for all isolates available are analysed and an examination of the secondary structure patterns of related groups is carried out. The results indicate that(1) Mesodinium invariably represents a completely separated and isolated clade positioned between two subphyla of ciliates with very deep branching, which indicates that they should be a primitive or ancestral group for the subphylum Intramacronucleata;(2) the secondary structure of the SSU r RNA of Mesodinium species is unusual in that, while the secondary structure of V4 in Mesodinium sp. has the deletions common to all litostome ciliates, it has more extensive deletions in helix E238 and a longer helix E231;(3) combining the phylogenetic and morphological information, we suggest establishing Mesodiniea cl. nov., including the order Mesodiniida Grain, 1994, belonging to the subphylum Intramacronucleata.  相似文献   
84.
The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from three stations chosen along the Red Sea to observe the meiofaunal community structure, its temporal distribution and vertical fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41 to 167 ind./10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind./10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates the existence of the well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.  相似文献   
85.
86.
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre‐established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage‐specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.  相似文献   
87.
ABSTRACT. The morphologically unique genus Gastrocirrhus has been considered a distinct but systematically uncertain euplotid due to the absence of both morphogenetic and molecular information. Based on the small subunit rRNA gene sequence, the phylogenetic position of Gastrocirrhus monilifer Ozaki & Yagui, 1942 was re-addressed using multiple algorithms (neighbor-joining, maximum parsimony, least-squares, and Bayesian inference methods). Results indicate that: (1) all phylogenetic trees using different methods are nearly identical in topology, placing G. monilifer closest to Euplotidium arenarium ; (2) Gastrocirrhus and Euplotidium form a monophyletic group, namely the family Gastrocirrhidae, and appear to be intermediate taxa bridging the evolution of the Diophrys-Uronychia and Euplotes- complexes (i.e. Euplotes, Certesia , and Aspidisca ); (3) the order Euplotida is a paraphyletic group composed of three deeply diverged clades ( Euplotes–Certesia–Aspidisca – Gastrocirrhus–Euplotidium ; Uronychia – Diophrys ; and Prodiscocephalus ); (4) together with Prodiscocephalus , the Diophrys-Uronychia complex forms a group at the suborder level and is placed at the root of the order Euplotida, and (5) results from molecular analyses conspicuously challenge the conclusions deduced from morphological as well as morphogenetical investigations—the characteristics traditionally used to define the euplotid taxa at the generic level and/or above may not be uniformly reliable.  相似文献   
88.
Morphogenetic events during the division of the marine spirotrichous ciliate, Apokeronopsis crassa (Claparède & Lachmann 1858) n. comb. were investigated. Compared with members of the well-known genera Thigmokeronopsis, Uroleptopsis, and Pseudokeronopsis, A. crassa has one row of buccal cirri, high number of transverse cirri, clearly separated midventral rows, lacks thigmotactic cirri and a gap in adoral zone, its undulating membranes (UMs) anlage forms one cirrus and marginal rows and dorsal kineties form apokinetally during division. All these characteristics indicate that this organism represents a new taxon at the generic level, and hence a new genus is suggested, Apokeronopsis n. g. It is defined as thus: Pseudokeronopsidae with Pseudokeronopsis-like bicorona of frontal cirri and one marginal row on each side; one row of two or more buccal cirri in ordinary position; two midventral rows distinctly separated, hence of cirri that are not in a typical zig-zag pattern; high number of transverse cirri, caudal cirri absent, and frontoterminal cirri present; thigmotactic cirri absent, many macronuclear nodules fuse into many masses as well as marginal and dorsal kineties form apokinetally during morphogenesis. At the same time, the genus ThigmokeronopsisWicklow, 1981 is redefined, and one new combination, Apokeronopsis antarctica (Petz, 1995) n. comb. is proposed. The morphogenetic events of A. crassa are characterized as follows: (1) In the proter, the adoral zone of membranelles and UMs are completely renewed by the oral primordium. The UM anlage is formed apokinetally on the dorsal wall of the buccal cavity and is hence clearly separated from the frontoventral-transverse (FVT) cirral anlagen in the proter. (2) Frontoventral-transverse cirral anlagen are generated de novo in the outermost region of the cortex to the right of the old UMs. (3) A row of buccal cirri arises from FVT cirral streak I. (4) The marginal rows and dorsal kineties originate de novo in both dividers; no caudal cirri are formed. (5) The last FVT-streak contributes two frontoterminal cirri. (6) The many macronuclear nodules fuse into many masses (about 50 segments) during division, unlike a singular or branched mass as described in other urostylids.  相似文献   
89.
90.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号