首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   19篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1995年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1968年   2篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
101.

Background

A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts.

Methods

We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions.

Results

Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks.

Conclusions

Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.  相似文献   
102.
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.  相似文献   
103.
Turcichondrostoma, a new genus, from the Southwestern Anatolia is distinguished by having fewer gill rakers on first gill arch and morphologies of premaxilla and dentary bones. In addition, as a result of the phylogenetic analyses based on combine data set (mtDNA COI + Cytb) sequences (1706 bp.), Turcichondrostoma genus was recovered with high posterior probability value (BI PP:1.0) and strong-supported bootstrap value (ML BP: 100%) among the former Chondrostoma groups. Also, high K2P mean genetic distance values (more than 7.84%) differentiated genus Turcichondrostoma from the other genera of former Chondrostoma group. The results of both morphological-osteological and molecular analyses are congruent with each other. The results of this study revealed that the genus Turcichondrostoma is easily distinguished from the genera in Chondrostoma group.  相似文献   
104.
ABSTRACT

Maternal deprivation at an early age is a powerful stressor that causes permanent alterations in cognitive and behavioral functions during the later stages of life. We investigated the effects of oxytocin on cognitive defects and anxiety disorders caused by acute infantile maternal deprivation in adult rats. We used 18-day-old Wistar albino rats of both sexes. The experimental groups included control (C), maternally deprived (MD), maternally deprived and treated with 0.02 μg/kg oxytocin (MD-0.02 µg/kg oxy), maternally deprived and treated with 2 μg/kg oxytocin (MD-2 µg/kg oxy). When the rats were 60 days old, the open field (OF) and elevated plus maze (EPM) behavioral tests, and the Morris water maze (MWM) test for spatial learning and memory were performed. In addition, the number of neurons in the hippocampus, prefrontal cortex (PFC) and amygdala were determined using quantitative histology. We also measured vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in the PFC. In both sexes, the MD group failed the learning test and the MD-2 μg/kg oxy group failed in the memory test. The MD-0.02 μg/kg oxy group spent more time in the open arm of the EPM device and their locomotor activities were greater in the OF test. The VEGF and BDNF levels in the PFC were higher in the MD-0.02 μg/kg oxy groups than the other maternally deprived groups (oxytocin ±). The number of PFC neurons was low in all male maternally deprived (oxytocin ±) groups, while the number of amygdala neurons was low in both female and male maternally deprived (oxytocin ±) groups. Male rats were more affected by maternal deprivation; administration of oxytocin had dose-dependent biphasic effects on learning, memory and anxiety.  相似文献   
105.
In this study, cytochemical staining methods were used to follow the cytochemical modifications of microspore cytoplasm and sporoderm in Campsis radicans (L.) Seem. from tetrad stage to mature pollen. Flower buds were collected at different stages of development, and the anthers were fixed and embedded in Araldite. To make cytochemical observations under light microscope, semithin sections were cut and stained with different dyes. Cytochemical methods provided the opportunity to localize the reserve material in the microspore and pollen cytoplasm, to distinguish the different layers of the sporoderm, and to determine its chemical structure at different developmental stages. Microspore cytoplasm contains variable amounts of proteins, lipids, and insoluble carbohydrates at different stages of microsporogenesis. Sporoderm formation starts at tetrad stage by the formation of primexine and is completed at vacuolated microspore stage by the addition of sporopollenin from tapetum. During the vacuolization and enlargement of the microspores, the structure and the chemical composition of the exine are modified. The endexine becomes chemically different from the ectexine. The ectexine is composed of sporopollenin and a small amount of protein, whereas the endexine is composed of sporopollenin, proteins, and traces of polysaccharides.  相似文献   
106.
In addition to two known furanogermacranes, a new furanogermacrane and a new and highly unstable furanoeremophilane were obtained from the fruits of Smyrnium cordifolium. The latter compound could be the precursor of a number of eremophilanolides obtained from some other Smyrnium species.  相似文献   
107.
The horse has been a food source, but more importantly, it has been a means for transport. Its domestication was one of the crucial steps in the history of human civilization. Despite the archaeological and molecular studies carried out on the history of horse domestication, which would contribute to conservation of the breeds, the details of the domestication of horses still remain to be resolved. We employed 21 microsatellite loci and mitochondrial control region partial sequences to analyse genetic variability within and among four Anatolian native horse breeds, Ayvac?k Pony, Malakan Horse, H?n?s Horse and Canik Horse, as well as samples from indigenous horses of unknown breed ancestry. The aims of the study were twofold: first, to produce data from the prehistorically and historically important land bridge, Anatolia, in order to assess its role in horse domestication and second, to analyse the data from a conservation perspective to help the ministry improve conservation and management strategies regarding native horse breeds. Even though the microsatellite data revealed a high allelic diversity, 98% of the genetic variation partitioned within groups. Genetic structure did not correlate with a breed or geographic origin. High diversity was also detected in mtDNA control region sequence analysis. Frequencies of two haplogroups (HC and HF) revealed a cline between Asia and Europe, suggesting Anatolia as a probable connection route between the two continents. This first detailed genetic study on Anatolian horse breeds revealed high diversity among horse mtDNA haplogroups in Anatolia and suggested Anatolia’s role as a conduit between the two continents. The study also provides an important basis for conservation practices in Turkey.  相似文献   
108.
Myoglobinuric acute renal failure (ARF) is a uremic syndrome caused by traumatic or non-traumatic skeletal muscle breakdown and intracellular elements that are released into the bloodstream. We hypothesized that hyperbaric oxygen (HBO) therapy could be beneficial in the treatment of myoglobinuric ARF caused by rhabdomyolysis. A total of 32 rats were used in the study. The rats were divided into four groups: control, control+hyperbaric oxygen (control+HBO), ARF, and ARF+hyperbaric oxygen (ARF+HBO). Glycerol (8 ml/kg) was injected into the hind legs of each of the rats in ARF and ARF+HBO groups. 2.5 atmospheric absolute HBO was applied to the rats in the control+HBO and ARF+HBO groups for 90 min on two consecutive days. Plasma urea, creatinine, sodium, potassium, calcium, aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, creatinine kinase and urine creatinine and sodium were examined. Creatinine clearance and fractional sodium excretion could then be calculated. Superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) levels were assessed in renal tissue. Tissue samples were evaluated by Hematoxylin-eosin, PCNA and TUNEL staining histopathologically. MDA levels were found to be significantly decreased whereas SOD and CAT were twofold higher in the ARF+HBO group compared to the ARF group. Renal function tests were ameliorated by HBO therapy. Semiquantitative evaluation of histopathological findings indicated that necrosis and cast formation was decreased by HBO therapy and TUNEL staining showed that apoptosis was inhibited. PCNA staining showed that HBO therapy did not increase regeneration. Ultimately, we conclude that, in accordance with our hypothesis, HBO could be beneficial in the treatment of myoglobinuric ARF.  相似文献   
109.
Mms1 and Mms22 are subunits of an Rtt101-based E3 ubiquitin ligase required for replication of damaged DNA templates in Saccharomyces cerevisiae. The function and evolutionary conservation of this DNA repair module are unknown. Here we report the characterization of an Mms1 ortholog in Schizosaccharomyces pombe. Fission yeast Mms1 was discovered through its physical association with S. pombe Mms22 (also known as Mus7). Loss of S. pombe Mms1 results in the accumulation of spontaneous DNA damage, mitotic delay, and hypersensitivity to genotoxins such as camptothecin that perturb replisome progression. Homologous recombination repair proteins Rhp51 and Rad22 (Rad51 and Rad52 orthologs, respectively) are critical for survival in the absence of Mms1; however, there is no such requirement for Mus81–Eme1 Holliday junction resolvase that is essential for recovery from broken replication forks. Mms1 and Mms22 mutants share similar phenotypes and are genetically epistatic under unperturbed growth conditions and following exposure to genotoxins. From these data we conclude that an evolutionary conserved Mms1–Mms22 complex is required for replication of damaged DNA in fission yeast.  相似文献   
110.
Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Δ mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.Homologous recombination (HR) is often described as a double-edged sword: it can maintain genome stability by promoting DNA repair, while its injudicious action can disturb genome stability by causing gross chromosome rearrangement (GCR) or loss of heterozygosity (LOH). Both GCR and LOH are potential precursors of diseases such as cancer, and consequently there is need to control when and how HR is used.A key step in most HR is the loading of the Rad51 recombinase onto single-stranded DNA (ssDNA), which forms a nucleoprotein filament (nucleofilament) that catalyzes the pairing of homologous DNAs and subsequent strand invasion (32). This is a critical point at which recombination can be regulated through the removal of the Rad51 filament (60). Early removal can prevent strand invasion altogether, freeing the DNA for alternative processing. Later removal may limit unnecessary filament growth, free the 3′-OH of the invading strand to prime DNA synthesis, and ultimately enable ejection of the invading strand, which is important for the repair of double-strand breaks (DSBs) by synthesis-dependent strand annealing (SDSA). SDSA avoids the formation of Holliday junctions that can be resolved into reciprocal exchange products (crossovers), which may result in GCR or LOH if the recombination is ectopic or allelic, respectively.One enzyme that appears to be able to control Rad51 in the aforementioned manner is the yeast superfamily 1 DNA helicase Srs2 (42). In Saccharomyces cerevisiae, Srs2 is recruited to stalled replication forks by the SUMOylation of PCNA, and there it appears to block Rad51-dependent HR in favor of Rad6- and Rad18-dependent postreplication repair (1, 2, 35, 50, 53, 58). In vitro Srs2 can strip Rad51 from ssDNA via its DNA translocase activity (31, 62) and therefore probably controls HR at stalled replication forks by acting as a Rad51 disruptase. In accord with this, chromatin immunoprecipitation analysis has shown that Rad51 is enriched at or near replication forks in an srs2 mutant (50). Srs2 also plays an important role in crossover avoidance during DSB repair, where it is thought to promote SDSA by both disrupting Rad51 nucleofilaments and dissociating displacement (D) loops (20, 27).Srs2 is conserved in the fission yeast Schizosaccharomyces pombe (19, 43, 63) and has a close relative in bacteria called UvrD, which can similarly control HR by disrupting RecA nucleofilaments (61). However, an obvious homologue in mammals has not been detected. Recently, two mammalian members of the RecQ DNA helicase family, BLM and RECQL5, were shown to disrupt Rad51 nucleofilaments in vitro (11, 25), although in the case of BLM, this activity appears to be relatively weak (5, 55). Nevertheless these data have led to speculation that both BLM and RECQL5 might perform a function similar to that of Srs2 in vivo (6). Certainly mutational inactivation of either helicase results in elevated levels of HR and genome instability, with an associated increased rate of cancer (23, 25). However, BLM and RECQL5 are not the only potential Rad51 disruptases in mammals; a relative of Srs2 and UvrD called FBH1 was recently implicated in this role by genetic studies of its orthologue in S. pombe and by its ability to partially compensate for the loss of Srs2 in S. cerevisiae, which, unlike S. pombe, lacks an FBH1 orthologue (15). FBH1 is so named because of an F box near its N terminus—a feature that makes it unique among DNA helicases (28). The F box is important for its interaction with SKP1 and therefore the formation of an E3 ubiquitin ligase SCF (SKP1-Cul1-F-box protein) complex (29). The targets of this complex are currently unknown. In S. pombe, mutations within Fbh1''s F-box block interaction with Skp1 and prevent Fbh1 from localizing to the nucleus and forming damage-induced foci therein (57). Fbh1''s role in constraining Rad51 activity in S. pombe is evidenced by the increase in spontaneous Rad51 foci and accumulation of UV irradiation-induced Rad51-dependent recombination intermediates in an fbh1Δ mutant (47). Moreover, loss of both Fbh1 and Srs2 in S. pombe results in a synergistic reduction in cell viability, and like Srs2, Fbh1 is essential for viability in the absence of the S. pombe RecQ family DNA helicase Rqh1, which processes recombination intermediates (47, 48). In both cases the synthetic interaction is suppressed by deleting rad51, suggesting that Fbh1 works in parallel with Srs2 and Rqh1 to prevent the formation of toxic recombination intermediates. In yeast, Rad51-mediated recombination is dependent on Rad52 (Rad22 in S. pombe), which is believed to promote the nucleation of Rad51 onto DNA that is coated with the ssDNA binding protein replication protein A (RPA) (18, 32). Intriguingly, the genotoxin sensitivity and recombination deficiency of a rad22 mutant are suppressed in a Rad51-dependent manner by deleting fbh1 (48). This suggests that Fbh1 and Rad22 act in opposing ways to modulate the assembly of the Rad51 nucleofilament. Although current data indicate a role for Fbh1 in controlling HR, the only evidence so far that Fbh1 limits recombinant formation is in chicken DT40 cells, for which a modest increase in sister chromatid exchange has been noted when FBH1 is deleted (30).Here we present in vivo evidence suggesting that Fbh1 does indeed act as a Rad51 disruptase, which is dependent on its DNA helicase/translocase activity. We confirm predictions that this activity works in opposition to Rad22 for the loading of Rad51 onto DNA and show that Fbh1''s modulation of Rad51 activity, while not essential for limiting spontaneous direct-repeat recombination, is critical for preventing recombination at blocked replication forks. Finally, we highlight similarities and differences between Fbh1 and Srs2, based on their mutant phenotypes and relative abilities to suppress recombination when overexpressed. Overall our data affirm that Fbh1 is one of the principal modulators of Rad51 activity in fission yeast and therefore may play a similar role in vertebrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号