首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   31篇
  国内免费   2篇
  2023年   13篇
  2022年   10篇
  2021年   30篇
  2020年   20篇
  2019年   27篇
  2018年   24篇
  2017年   21篇
  2016年   18篇
  2015年   42篇
  2014年   40篇
  2013年   37篇
  2012年   22篇
  2011年   25篇
  2010年   14篇
  2009年   13篇
  2008年   12篇
  2007年   16篇
  2006年   13篇
  2005年   12篇
  2004年   9篇
  2003年   17篇
  2002年   7篇
  2001年   2篇
  1999年   2篇
  1996年   2篇
  1994年   2篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1973年   5篇
  1972年   3篇
  1970年   1篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1960年   1篇
  1937年   1篇
排序方式: 共有510条查询结果,搜索用时 424 毫秒
91.
92.
Tumor necrosis factor (TNF-alpha) stimulates a number of signal transduction pathways in which phospholipases produce lipid second messengers. However, the immediate molecular targets of these messengers, in particular those of ceramide and arachidonic acid (AA) and their role in TNF signaling are not well defined. In this study we investigated the relationship of ceramide and AA in regulating an atypical PKC isozyme, PKC zeta. U937 cells responding to TNF-alpha treatment with NF kappa B activation displayed enhanced phosphorylation of PKC zeta, which is already detectable 30 s after stimulation. [14C]ceramide specifically binds to and regulates kinase activity of PKC zeta in a biphasic manner. Binding studies indicate high and low affinity binding with bmax values of 60 and 600 nM and Kd values of 7.5 and 320 nM respectively. At ceramide concentrations as low as 0.5 nM an up to 4-fold increase in autophosphorylation is obtained, which, at concentrations > 60 nM, again declines to basal levels. Interestingly, AA competes for ceramide binding and inhibits basal and ceramide-stimulated PKC zeta kinase activity at < 100 nM. Metabolism of [14C]ceramide in cells is slow and is inhibited in the presence of equimolar concentrations of lyso-phosphatidylcholine. Based on the bifunctional modulation of PKC zeta by the lipid messengers ceramide and AA, a model of TNF signal pathways is suggested in which PKC zeta takes a central position, acting as a molecular switch between mitogenic and growth inhibitory signals of TNF-alpha.  相似文献   
93.

Background

Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated.

Methods

The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2–1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA.

Results

The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p < 0.001) enhanced when both agents were applied in combination compared to each agent alone. Similarly, synergistic interactions were observed when AgNPs were combined with amoxicillin, azithromycin, clarithromycin or linezolid in 30–40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested.

Conclusions

A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which have been proven to be ineffective against MRSA. The suggested approach would be useful to face the fast-growing drug-resistance with the slow development of new antimicrobial agents, and to preserve last resort antibiotics such as vancomycin.
  相似文献   
94.
95.

Introduction

Plasma triglyceride levels are a risk factor for coronary heart disease. Triglyceride metabolism is well characterized, but challenges remain to identify novel paths to lower levels. A metabolomics analysis may help identify such novel pathways and, therefore, provide hints about new drug targets.

Objectives

In an observational study, causal relationships in the metabolomics level of granularity are taken into account to distinguish metabolites and pathways having a direct effect on plasma triglyceride levels from those which are only associated with or have indirect effect on triglyceride.

Method

The analysis began by leveraging near-complete information from the genome level of granularity using the GDAG algorithm to identify a robust causal network over 122 metabolites in an upper level of granularity. Knowing the metabolomics causal relationships, we enter the triglyceride variable in the model to identify metabolites with direct effect on plasma triglyceride levels. We carried out the same analysis on triglycerides measured over five different visits spanning 24 years.

Result

Nine metabolites out of 122 metabolites under consideration influenced directly plasma triglyceride levels. Given these nine metabolites, the rest of metabolites in the study do not have a significant effect on triglyceride levels at significance level alpha = 0.001. Therefore, for the further analysis and interpretations about triglyceride levels, the focus should be on these nine metabolites out of 122 metabolites in the study. The metabolites with the strongest effects at the baseline visit were arachidonate and carnitine, followed by 9-hydroxy-octadecadenoic acid and palmitoylglycerophosphoinositol. The influence of arachidonate on triglyceride levels remained significant even at the fourth visit, which was 10 years after the baseline visit.

Conclusion

These results demonstrate the utility of integrating multi-omics data in a granularity framework to identify novel candidate pathways to lower risk factor levels.
  相似文献   
96.
8-Desacylrepin, a new guaianolide, has been isolated from Jurinea carduiformis.  相似文献   
97.
E.coli aspartokinase II-homoserine dehydrogenase II is, as aspartokinase I-homoserine dehydrogenase I, composed of three globular domains: the N-terminal domain is endowed with kinase activity; the C-terminal domain carries the dehydrogenase activity. These two parts of the polypeptide chain are separated by a central inactive domain. Thus, the polypeptide chains of the two multifunctional proteins are homologous not only in their sequence but also in their triglobular domain structure.  相似文献   
98.
99.
The current study was performed to assess the effect of Burkholderia cepacia CS8 on the phytoremediation of cadmium (Cd) by Catharanthus roseus grown in Cd-contaminated soil. The plants cultivated in Cd amended soil showed reduced growth, dry mass, gas-exchange capacity, and chlorophyll contents. Furthermore, the plants exhibited elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress. The bacterized plants showed higher shoot length, root length; fresh and dry weight. The improved stress tolerance in inoculated plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonoids, and improved activity of antioxidant enzymes including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase. Similarly, the 1-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, auxin, and siderophore production capability of B. cepacia CS8 improved growth and stress alleviation in treated plants. The bacterial inoculation enhanced the amount of water extractable Cd from soil. Furthermore, the inoculated plants showed higher bioconcentration factor and translocation factor. The current study exhibits that B. cepacia CS8 improves stress alleviation and phytoextraction potential of C. roseus plants growing under Cd stress.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号