首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   10篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   8篇
  2014年   2篇
  2013年   6篇
  2012年   22篇
  2011年   37篇
  2010年   11篇
  2009年   5篇
  2008年   17篇
  2007年   7篇
  2006年   15篇
  2005年   16篇
  2004年   15篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
  1988年   2篇
  1970年   1篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有214条查询结果,搜索用时 390 毫秒
101.
102.
The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about $7\,\upmu \text{ m }$ ) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of $6.5\,\upmu \text{ m }$ , the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about $0.8\,\upmu \text{ m }$ was detected. With a validity in the range of 10 nm and a precision down to about 3–5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.  相似文献   
103.
Although the role of individual brain lipids for learning and memory has been reported, no systematic approach associating brain lipids with spatial memory has been carried out. It was therefore the aim of the study to determine brain lipids in hippocampus of mice forming and yoked controls that did not form spatial memory using the probe trial as the endpoint. 10 animals were trained in the Morris water maze (MWM) and 10 mice were serving as yoked controls i.e. no platform was used during the whole experiment. Hippocampal tissue lipids were extracted and data were acquired with Fourier transformation ion cyclotron resonance mass spectrometry (LTQ-FT) coupled to HPLC. Glycerophosphatidylethanolamines (18:0/22:6, 18:0/20:4 and 18:1/18:1), plasmalogens (16:0-10/22:6 and 18:0-10/22:6) and ceramides (18:0) showed higher levels in the trained group, while glycerolysophosphatidylcholines (16:0, 18:1, 18:0, 20:4), sphingomyelins (16:0, 24:1), ether linked glycerophosphatidylcholines (16:0-10/18:0), glycerophosphatidylcholines (16:0/18:1, 16:0/18:0, 18:0/18:1, 38:7, 18:1/20:1, 20:4/20:4, 22:1/18:1, 22:0/18:1, 20:4/22:6, 22:6/22:6), glucosylceramide (24:1) and plasmalogen (18:0-10/20:1) revealed lower levels in the trained group. Decreased levels of certain species of lysophosphatidylcholine, sphingomyelin, plasmenylphosphatidylcholine, phosphatidylcholine, glycosylceramide and plasmalogen at the probe trial for spatial memory may indicate catabolism in terms of consumption during this process. Increased hippocampal levels of long chain highly unsaturated phosphatidylethanolamines, plasmalogens and ceramides may reflect increased synthesis or decreased degradation at the endpoint of memory testing, probably representing interactions in the brain lipid pathways. The study shows pathways involved in spatial memory, may propose the use of individual brain lipids as probable cognitive enhancers and forms the basis for further studies on the role of brain lipids per se.  相似文献   
104.

Background

Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells.

Methods and Principal Findings

Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3) transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC) lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32∶1) and PC(O-34∶1) plasmalogens were displaced by PC(30∶0) and PC(32∶0) species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested.

Conclusions and Significance

We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3), expression-specific (Tax1 vs. Tax3) and cell-type–specific (T lymphocytes vs. kidney epithelial cells) changes in the metabolite profiles. The new insight on the affected metabolic pathways can be used to better understand the molecular mechanisms of HTLV induced transformation, which in turn can result in new treatment strategies.  相似文献   
105.
Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Angstroms resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.  相似文献   
106.
Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) have been implicated in the effects of regulatory peptides on proliferation. We studied how ERK was activated by PKC following regulatory peptide or phorbol ester stimulation and we also investigated the effect of ERK activation on proliferation in Panc-1 cells. Panc-1 cells transfected with CCK1 receptors were treated with cholecystokinin (CCK), neurotensin (NT), or phorbol 12-myristate 13-acetate (PMA). DNA synthesis was studied by measuring tritiated thymidine incorporation. PKC isoforms were selectively inhibited with G?6983 and 200 nM Ro-32-0432, their translocation was detected by confocal microscopy and by subcellular fractionation followed by immunoblotting. ERK cascade activation was detected with phosphoERK immunoblotting and inhibited with 20 microM PD98059. PMA and CCK inhibited, NT stimulated DNA synthesis. These effects were inhibited by Ro-32-0432 but not by G?6983 suggesting the involvement of PKCepsilon in proliferation control. Confocal microscopy and subcellular fractionation demonstrated that PMA, CCK, and NT caused cytosol to membrane translocation of PKCepsilon and ERK activation that was inhibited by Ro-32-0432 but not by G?6983. ERK activation was prolonged following PMA and CCK, but transient after NT treatment. PMA, CCK, and NT all activated cyclinD1, while p21CIP1 expression was increased by only PMA and CCK, but not by NT; each of these effects is inhibited by PD98059. In conclusion, our results provide evidence for PKCepsilon-mediated differential ERK activation and growth regulation in Panc-1C cells. Identification of the mechanisms by which these key signaling pathways are modulated could provide a basis for the development of novel therapeutic interventions to treat pancreatic cancer.  相似文献   
107.
108.
109.
Microglia, the immunocompetent cells of the CNS, are rapidly activated in response to injury and microglia migration towards and homing at damaged tissue plays a key role in CNS regeneration. Lysophosphatidic acid (LPA) is involved in signaling events evoking microglia responses through cognate G protein‐coupled receptors. Here we show that human immortalized C13NJ microglia express LPA receptor subtypes LPA1, LPA2, and LPA3 on mRNA and protein level. LPA activation of C13NJ cells induced Rho and extracellular signal‐regulated kinase activation and enhanced cellular ATP production. In addition, LPA induced process retraction, cell spreading, led to pronounced changes of the actin cytoskeleton and reduced cell motility, which could be reversed by inhibition of Rho activity. To get an indication about LPA‐induced global alterations in protein expression patterns a 2‐D DIGE/LC‐ESI‐MS proteomic approach was applied. On the proteome level the most prominent changes in response to LPA were observed for glycolytic enzymes and proteins regulating cell motility and/or cytoskeletal dynamics. The present findings suggest that naturally occurring LPA is a potent regulator of microglia biology. This might be of particular relevance in the pathophysiological context of neurodegenerative disorders where LPA concentrations can be significantly elevated in the CNS.  相似文献   
110.

Background

Preeclampsia is a common obstetrical disease affecting 3-5% of pregnancies and representing one of the leading causes of both maternal and fetal mortality. Maternal symptoms occur as an excessive systemic inflammatory reaction in response to the placental factors released by the oxidatively stressed and functional impaired placenta. The T-cell immunoglobulin domain and mucin domain (TIM) family is a relatively newly described group of molecules with a conserved structure and important immunological functions. Identification of Galectin-9 as a ligand for TIM-3 has established the Galectin-9/TIM-3 pathway as an important regulator of Th1 immunity and tolerance induction.

Methods

The aim of our study was to investigate the expression and function of Galectin-9 and TIM-3 molecules by peripheral blood mononuclear cells and the possible role of Galectin-9/TIM-3 pathway in the immunoregulation of healthy pregnancy and early-onset preeclampsia. We determined TIM-3 and Gal-9 expression and cytotoxicicty of peripheral lymphocytes of early-onset preeclamptic women and healthy pregnant woman using flow cytometry.

Results

Investigating peripheral lymphocytes of women with early-onset preeclampsia, our results showed a decreased TIM-3 expression by T cells, cytotoxic T cells, NK cells and CD56dim NK cells compared to healthy pregnant women. Interestingly, we found a notably increased frequency of Galectin-9 positive cells in each investigated lymphocyte population in the case of early-onset preeclamptic patients. We further demonstrated increased cytotoxic activity by cytotoxic T and CD56dim NK cells in women with early-onset preeclampsia. Our findings showed that the strongest cellular cytotoxic response of lymphocytes occurred in the TIM-3 positive subpopulations of different lymphocytes subsets in early-onset preeclampsia.

Conclusion

These data suggest that Gal-9/TIM-3 pathway could play an important role in the immune regulation during pregnancy and the altered Galectin-9 and TIM-3 expression could result an enhanced systemic inflammatory response including the activation of Th1 lymphocytes in preeclampsia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号