首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   10篇
  213篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   8篇
  2014年   2篇
  2013年   6篇
  2012年   22篇
  2011年   37篇
  2010年   11篇
  2009年   5篇
  2008年   17篇
  2007年   7篇
  2006年   15篇
  2005年   16篇
  2004年   15篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1988年   2篇
  1970年   1篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有213条查询结果,搜索用时 0 毫秒
141.
We have identified 15 polymorphic microsatellite loci for the barn owl (Tyto alba), five from testing published owl loci and 10 from testing non‐owl loci, including loci known to be of high utility in passerines and shorebirds. All 15 loci were sequenced in barn owl, and new primer sets were designed for eight loci. The 15 polymorphic loci displayed two to 26 alleles in 56–58 barn owls. When tested in 10 other owl species (n = 1–6 individuals), between four and nine loci were polymorphic per species. These loci are suitable for studies of population structure and parentage in owls.  相似文献   
142.
143.
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes.  相似文献   
144.

Purpose

MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA).

Materials and Methods

The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4.

Results

The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively.

Conclusions

The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end.  相似文献   
145.
PGD(2), a major mast cell mediator, is a potent eosinophil chemoattractant and is thought to be involved in eosinophil recruitment to sites of allergic inflammation. In plasma, PGD(2) is rapidly transformed into its major metabolite delta(12)-PGJ(2), the effect of which on eosinophil migration has not yet been characterized. In this study we found that delta(12)-PGJ(2) was a highly effective chemoattractant and inducer of respiratory burst in human eosinophils, with the same efficacy as PGD(2), PGJ(2), or 15-deoxy-delta(12,14)-PGJ(2). Moreover, pretreatment of eosinophils with delta(12)-PGJ(2) markedly enhanced the chemotactic response to eotaxin, and in this respect delta(12)-PGJ(2) was more effective than PGD(2). delta(12)-PGJ(2)-induced facilitation of eosinophil migration toward eotaxin was not altered by specific inhibitors of intracellular signaling pathways relevant to the chemotactic response, phosphatidylinositol 3-kinase (LY-294002), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (U-0126), or p38 mitogen-activated protein kinase (SB-202190). Desensitization studies using calcium flux suggested that delta(12)-PGJ(2) signaled through the same receptor, CRTH2, as PGD(2). Finally, delta(12)-PGJ(2) was able to mobilize mature eosinophils from the bone marrow of the guinea pig isolated perfused hind limb. Given that delta(12)-PGJ(2) is present in the systemic circulation at relevant levels, a role for this PGD(2) metabolite in eosinophil release from the bone marrow and in driving eosinophil recruitment to sites of inflammation appears conceivable.  相似文献   
146.
Protein kinase C (PKC) and mitogen-activated protein (MAP) kinases have been implicated in the modulation of agonist-induced contractions of large vessels. However, their role in pressure- and agonist-induced constrictions of skeletal muscle arterioles, which have a major role in regulating peripheral resistance, is not clearly elucidated. Thus constrictions of isolated rat gracilis muscle arterioles (approximately 80 microm in diameter) to increases in intraluminal pressure and to norepinephrine (NE) or angiotensin II (ANG II) were assessed in the absence or presence of chelerythrine, PD-98058, and SB-203580 (inhibitors of PKC, p42/44 and p38 MAP kinase pathways, respectively). Arteriolar constriction to NE and ANG II were significantly reduced by chelerythrine (by approximately 90%) and unaffected by SB-203580, whereas PD-98058 decreased only ANG II-induced constrictions (by approximately 60%). Pressure-induced increases in wall tension (from 0.1 to 0.7 N/m) resulted in significant arteriolar constrictions (50% maximum) that were abolished by chelerythrine without altering smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)) (fura 2 microfluorimetry). PD-98058 and SB-203580 significantly decreased the magnitude of myogenic tone (by 20% and 60%, respectively) and reduced the sensitivity of the myogenic mechanism to wall tension, causing a significant rightward shift in the wall tension-myogenic tone relationship without affecting smooth muscle [Ca(2+)i]. MAP kinases were demonstrated with Western blotting. Thus in skeletal muscle arterioles 1) PKC is involved in both myogenic and agonist-induced constrictions, 2) PD-98058-sensitive p42/44 MAP kinases modulate both wall tension-dependent and ANG II-induced constrictions, whereas 3) a SB-203580-sensitive p38 MAP kinase pathway seems to be specifically involved in the mechanotransduction of wall tension.  相似文献   
147.

Background

Neurosecretion is the multistep process occurring in separate spatial and temporal cellular boundaries which complicates its comprehensive analysis. Most of the research are focused on one distinct stage of synaptic vesicle recycling. Here, we describe approaches for complex analysis of synaptic vesicle (SV) endocytosis and separate steps of exocytosis at the level of presynaptic bouton and highly purified SVs.

Methods

Proposed fluorescence-based strategies and analysis of neurotransmitter transport provided the advantages in studies of exocytosis steps. We evaluated SV docking/tethering, their Ca2+-dependent fusion and release of neurotransmitters gamma-aminobutyric acid (GABA) and glutamate in two animal models.

Results

Approaches enabled us to study: 1) endocytosis/Ca2+-dependent release of fluorescent carbon nanodots (CNDs) during stimulation of nerve terminals; 2) the action of levetiracetam, modulator of SV glycoprotein SV2, on fusion competence of SVs and stimulated release of GABA and glutamate; 3) impairments of several steps of neurosecretion under vitamin D3 deficiency.

Conclusions

Our algorithm enabled us to verify the method validity for multidimensional analysis of SV turnover. By increasing SV docking and the size of readily releasable pool (RRP), levetiracetam is able to selectively enhance the stimulated GABA secretion in hippocampal neurons. Findings suggest that SV2 regulates RRP through impact on the number of docked/primed SVs.

General significance

Methodology can be widely applied to study the stimulated neurosecretion in presynapse, regulation of SV docking, their Ca2+-dependent fusion with target membranes, quantitative analysis of expression of neuron-specific proteins, as well as for testing the efficiency of pre-selected designed neuroactive substances.  相似文献   
148.
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号