全文获取类型
收费全文 | 117篇 |
免费 | 20篇 |
专业分类
137篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2018年 | 3篇 |
2016年 | 5篇 |
2015年 | 7篇 |
2014年 | 11篇 |
2013年 | 8篇 |
2012年 | 9篇 |
2011年 | 12篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 7篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 5篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有137条查询结果,搜索用时 15 毫秒
71.
Martin Heine Lizanne Eva van den Akker Olaf Verschuren Anne Visser-Meily Gert Kwakkel TREFAMS-ACE Study Group 《PloS one》2015,10(3)
Background
Peak oxygen uptake (VO2peak) via cardiopulmonary exercise testing is considered the gold standard for testing aerobic capacity in healthy participants and people with various medical conditions. The reliability and responsiveness of cardiopulmonary exercise testing outcomes in persons with MS (PwMS) have not been extensively studied.Objective
(1) to investigate the reliability of cardiopulmonary exercise parameters in PwMS; (2) to determine the responsiveness, in terms of the smallest detectable change (SDC), for each parameter.Design
Two repeated measurements of cardiopulmonary exercise outcomes were obtained, with a median time interval of 16 days.Methods
Thirty-two PwMS suffering from subjective fatigue performed cardiopulmonary exercise tests on a cycle ergometer, to voluntary exhaustion. We calculated the reliability, in terms of the intra-class correlation coefficient (ICC [2,k]; absolute agreement), and the measurement error, in terms of standard error of measurement (SEM) and SDC at individual (SDCindividual) and group level (SDCgroup).Results
The ICC for VO2peak was 0.951, with an SEM of 0.131 L∙min−1 and an SDCindividual of 0.364 L∙min−1. When corrected for bodyweight, the ICC of VO2peak was 0.933, with an SEM of 1.7 mL∙kg−1∙min−1 and in an SDCindividual of 4.6 mL∙kg−1∙min−1.Limitations
Generalization of our study results is restricted to fatigued PwMS with a low to mild level of disability.Conclusions
At individual level, cardiopulmonary exercise testing can be used reliably to assess physical fitness in terms of VO2peak, but less so to determine significant changes. At group level, VO2peak can be reliably used to determine physical fitness status and establish change over time. 相似文献72.
Periostin expression by epicardium-derived cells is involved in the development of the atrioventricular valves and fibrous heart skeleton 总被引:2,自引:0,他引:2
Lie-Venema H Eralp I Markwald RR van den Akker NM Wijffels MC Kolditz DP van der Laarse A Schalij MJ Poelmann RE Bogers AJ Gittenberger-de Groot AC 《Differentiation; research in biological diversity》2008,76(7):809-819
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections. 相似文献
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections. 相似文献
73.
J T Lutgerink E van den Akker I Smeets D Pachen P van Dijk J M Aubry H Joenje M V Lafleur J Retèl 《Mutation research》1992,275(3-6):377-386
To study the interaction of singlet oxygen (1O2) with DNA and the biological consequences of 1O2-induced DNA damage, we used the thermodissociable endoperoxide of 3,3'-(1,4 naphthalidene) dipropionate (NDPO2) as a generator of free 1O2 in reactions with (1) 2'-deoxynucleoside 3'-monophosphates (dNps), (2) an oligonucleotide (16-mer) having one deoxyguanine (dG), (3) native and denaturated rat kidney DNA and (4) single-stranded (ss) and double-stranded (ds) bacteriophage M13mp10 DNA. Using both anion exchange and reversed phase HPLC and 32P-postlabeling analyses, it was found that exposure of the various dNps to chemically generated 1O2 led to a detectable reaction with dGp and not with dAp, dCp, d5mCp or Tp. The reaction with dGp led to degradation of this nucleotide and the formation of a large number of reaction products, one of which could be identified as 7-hydro-8-oxo-2'-deoxyguanosine 3'-monophosphate (8-oxo-dGp). A second product could tentatively be identified as a formamido pyrimidine derivative of dGp (Fapy-dGp). When ss DNA, ds DNA or the oligonucleotide were exposed to 1O2, the formation of 8-oxo-dG could also be demonstrated. With the oligonucleotide, we found a so far unidentified reaction product. Under the same reaction conditions the yield of 8-oxo-dG was about 8-fold higher in ss DNA than in ds DNA. In ss DNA 8-oxo-dG seemed to be a more prominent product than in the case of reaction of 1O2 with free dGp. Reaction of 1O2 with ss or ds M13mp10 DNA led to biological inactivation of these DNAs, ss DNA being at least 100-fold more sensitive than ds DNA. It could be concluded that inactivation of the ss DNA must be largely due to 1O2-induced DNA lesions other than 8-oxo-dG. In agreement with the observed preferential reaction of 1O2 with dG most of the so far sequenced mutations, induced by 1O2 in a 144 bp mutation target sequence inserted in the lacZ alpha gene of ss or ds M13mp10 DNA, occurred at a G or G/C base pair respectively. A preference for G(C) to T(A) transversions can be observed for which 8-oxo-dG might have been responsible. In ss DNA a significant number of the mutations are characterized by the fact that a G is deleted. 相似文献
74.
C. L. Verlinde E. A. Merritt F. Van den Akker H. Kim I. Feil L. F. Delboni S. C. Mande S. Sarfaty P. H. Petra W. G. Hol 《Protein science : a publication of the Protein Society》1994,3(10):1670-1686
The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes from foreign pathogens into the native framework of the toxin such that crucial features of both the epitope and the toxin are maintained. That is, the modified toxin must continue to evoke a strong mucosal immune response, and this response must be directed against an epitope conformation characteristic of the original pathogen. 相似文献
75.
Three balanced karyotypes (5p;15q), (8q;15q), and (12q;15q) were found simultaneously in a child with the Willi-Prader syndrome. The hypothesis is presented of a "jumping# translocation by affinity of telomeric and interstitial palindromes. The relationship between the Willi-Prader syndrome and a juxtacentric anomaly of the long arm of chromosome 15 is discussed. 相似文献
76.
van den Akker E van Dijk TB Schmidt U Felida L Beug H Löwenberg B von Lindern M 《Biological chemistry》2004,385(5):409-413
LFM-A13, or alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide, was shown to inhibit Bruton's tyrosine kinase (Btk). Here we show that LFM-A13 efficiently inhibits erythropoietin (Epo)-induced phosphorylation of the erythropoietin receptor, Janus kinase 2 (Jak2) and downstream signalling molecules. However, the tyrosine kinase activity of immunoprecipitated or in vitro translated Btk and Jak2 was equally inhibited by LFM-A13 in in vitro kinase assays. Finally, Epo-induced signal transduction was also inhibited in cells lacking Btk. Taken together, we conclude that LFM-A13 is a potent inhibitor of Jak2 and cannot be used as a specific tyrosine kinase inhibitor to study the role of Btk in Jak2-dependent cytokine signalling. 相似文献
77.
Functional C‐TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis 下载免费PDF全文
Sebastian Eves‐Van Den Akker Catherine J. Lilley Hazijah B. Yusup John T. Jones Peter E. Urwin 《Molecular Plant Pathology》2016,17(8):1265-1275
Sedentary plant‐parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re‐differentiate into unique and metabolically active ‘feeding sites’. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C‐TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia‐forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP‐encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up‐regulation during the plant–nematode interaction and expression in the effector‐producing pharyngeal gland cell. All internal CEP domains of multi‐domain RrCEPs are followed by di‐basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up‐regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non‐CEP‐containing, syncytia‐forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP‐rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two‐fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced. 相似文献
78.
79.
James A Cotton Catherine J Lilley Laura M Jones Taisei Kikuchi Adam J Reid Peter Thorpe Isheng J Tsai Helen Beasley Vivian Blok Peter J A Cock Sebastian Eves-van den Akker Nancy Holroyd Martin Hunt Sophie Mantelin Hardeep Naghra Arnab Pain Juan E Palomares-Rius Magdalena Zarowiecki Matthew Berriman John T Jones Peter E Urwin 《Genome biology》2014,15(3):1-17
80.
von Lindern M Parren-van Amelsvoort M van Dijk T Deiner E van den Akker E van Emst-de Vries S Willems P Beug H Löwenberg B 《The Journal of biological chemistry》2000,275(44):34719-34727
Protein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We analyzed the effect of PKC inhibitors with distinct modes of action on EpoR signaling in primary human erythroblasts and in a recently established murine erythroid cell line. Active PKC appeared essential for Epo-induced phosphorylation of the Epo receptor itself, STAT5, Gab1, Erk1/2, AKT, and other downstream targets. Under the same conditions, stem cell factor-induced signal transduction was not impaired. LY294002, a specific inhibitor of phosphoinositol 3-kinase, also suppressed Epo-induced signal transduction, which could be partially relieved by activators of PKC. PKC inhibitors or LY294002 did not affect membrane expression of the EpoR, the association of JAK2 with the EpoR, or the in vitro kinase activity of JAK2. The data suggest that PKC controls EpoR signaling instead of being a downstream effector. PKC and phosphoinositol 3-kinase may act in concert to regulate association of the EpoR complex such that it is responsive to ligand stimulation. Reduced PKC-activity inhibited Epo-dependent differentiation, although it did not effect Epo-dependent "renewal divisions" induced in the presence of Epo, stem cell factor, and dexamethasone. 相似文献