首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13217篇
  免费   721篇
  国内免费   3篇
  13941篇
  2022年   51篇
  2021年   139篇
  2020年   85篇
  2019年   117篇
  2018年   163篇
  2017年   158篇
  2016年   244篇
  2015年   408篇
  2014年   477篇
  2013年   923篇
  2012年   850篇
  2011年   867篇
  2010年   565篇
  2009年   522篇
  2008年   870篇
  2007年   908篇
  2006年   822篇
  2005年   848篇
  2004年   841篇
  2003年   779篇
  2002年   735篇
  2001年   139篇
  2000年   134篇
  1999年   205篇
  1998年   196篇
  1997年   133篇
  1996年   127篇
  1995年   105篇
  1994年   105篇
  1993年   108篇
  1992年   127篇
  1991年   92篇
  1990年   96篇
  1989年   98篇
  1988年   57篇
  1987年   80篇
  1986年   63篇
  1985年   67篇
  1984年   67篇
  1983年   56篇
  1982年   70篇
  1981年   60篇
  1980年   57篇
  1979年   23篇
  1978年   29篇
  1977年   34篇
  1976年   36篇
  1975年   34篇
  1974年   22篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5′-leader sequence of precursor tRNA. Human RNase P protein subunits Rpp21 and Rpp29, which bind to each other, with catalytic RNA (H1 RNA) are sufficient for activating endonucleolytic cleavage of precursor tRNA. Here we have determined the crystal structure of the complex between the Pyrococcus horikoshii RNase P proteins PhoRpp21 and PhoRpp29, the archaeal homologs of Rpp21 and Rpp29, respectively. PhoRpp21 and PhoRpp29 form a heterodimeric structure where the two N-terminal helices (α1 and α2) in PhoRpp21 predominantly interact with the N-terminal extended structure, the β-strand (β2), and the C-terminal helix (α3) in PhoRpp29. The interface is dominated by hydrogen bonds and several salt bridges, rather than hydrophobic interactions. The electrostatic potential on the surface of the heterodimer shows a positively charged cluster on one face, suggesting a possible RNA-binding surface of the PhoRpp21-PhoRpp29 complex. The present structure, along with the result of a mutational analysis, suggests that heterodimerization between PhoRpp21 and PhoRpp29 plays an important role in the function of P. horikoshii RNase P.  相似文献   
102.
This study investigated the effects of excess zinc intake on the mean arterial pressure (MAP), renal blood flow (RBF), inulin clearance (IC), serum zinc level, serum angiotensin-converting enzyme (ACE) activity, and kidney angiotensin II (AT II) levels in rats. Experiments were performed on male Sprague?CDawley rats maintained for 4?weeks on a diet containing either 5?mg/100?g (control group), 50?mg/100?g (Zn50 group), or 200?mg/100?g (Zn200 group) zinc carbonate. Serum zinc levels significantly increased to 126.5?% in the Zn50 group and 198.1?% in the Zn200 group compared with controls. MAP significantly increased to 107.8?% in the Zn50 group and 114.5?% in the Zn200 group again compared with controls. Although the difference in serum ACE activity was independent of the serum zinc levels, the kidney AT II levels increased significantly to 137.2?% in the Zn50 group and 174.4?% in the Zn200 group compared with the controls. RBF was decreased significantly to 74.4?% in the Zn50 group and 69.7?% in the Zn200 group compared with the controls. IC values were significantly decreased to 69.6?% in the Zn50 group and 52.7?% in the Zn200 group as compared with control levels. Combined together, these results show that excessive Zn intake reduced IC and RBF and increased MAP and kidney AT II levels, suggesting that excessive Zn intake reduces renal function.  相似文献   
103.
The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1–20) and H4(1–20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.  相似文献   
104.
The habitat and movements of a Pacific bluefin tuna were investigated by reanalyzing archival tag data with sea surface temperature data. During its trans-Pacific migration to the eastern Pacific, the fish took a direct path and primarily utilized waters, in the Subarctic Frontal Zone (SFZ). Mean ambient temperature during the trans-Pacific migration was 14.5 ± 2.9 (°C ± SD), which is significantly colder than the waters typically inhabited by bluefin tuna in their primary feeding grounds in the western and eastern Pacific (17.6 ± 2.1). The fish moved rapidly through the colder water, and the heat produced during swimming and the thermoconservation ability of bluefin tuna likely enabled it to migrate through the cold waters of the SFZ.  相似文献   
105.
Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.  相似文献   
106.
Neuromedin U (NMU) is a brain-gut peptide, which peripherally stimulates smooth muscle, increases of blood pressure, alters ion transport in the gut, controls local blood flow, and regulates adrenocortical function. Although intracerebroventricular (i.c.v.) administration of NMU is known to decrease food intake and body weight, little is known about its effect on other physiological functions. We examined the effects of i.c.v. administration of NMU on mean arterial pressure (MAP), heart rate (HR), and plasma norepinephrine in conscious rats. Neuromedin U (0.05 and 0.5 nmol) provoked an increase in MAP (93.8 +/- 0.5 to 123.5 +/- 1.7 and 94.7 +/- 0.8 to 132.7 +/- 3.0 mm Hg, respectively) and HR (334.9 +/- 6.0 to 494.1 +/- 6.9 and 346.3 +/- 3.3 to 475.1 +/- 8.9 beats/min, respectively). In contrast, plasma norepinephrine increased only with a high dose of neuromedin U. Intravenously administered NMU (0.5 nmol) elicited a small and short lasting increase in MAP, compared to that by i.c.v. NMU. These results indicate that central neuromedin U regulates sympathetic nervous system activity and affects cardiovascular function.  相似文献   
107.
Hepatocyte growth factor/scatter factor (HGF/SF) can induce proliferation and motility and promote invasion of tumor cells. Since HGF/SF receptor, c-Met, is expressed by tumor cells, and since stimulation of CD44, a transmembrane glycoprotein known to bind hyaluronic acid (HA) in its extracellular domain, is involved in activation of c-Met, we have studied the effects of CD44 stimulation by ligation with HA upon the expression and tyrosine phosphorylation of c-Met on human chondrosarcoma cell line HCS-2/8. The current study indicates that (a) CD44 stimulation by fragmented HA upregulates expression of c-Met proteins; (b) fragmented HA also induces tyrosine phosphorylation of c-Met protein within 30 min, an early event in this pathway as shown by the early time course of stimulation; (c) the effects of HA fragments are critically HA size-dependent. High molecular weight HA is inactive, but lower molecular weight fragments (M(r) 3.5 kDa) are active with maximal effect in the microg/ml range; (d) the standard form of CD44 (CD44s) is critical for the response because the effect on c-Met, both in terms of upregulation and phosphorylation, is inhibited by preincubation with an anti-CD44 monoclonal antibody; and (e) phosphorylation of c-Met induced by CD44 stimulation is inhibited by protein tyrosine kinase inhibitor, tyrphostin. Therefore, our study represents the first report that CD44 stimulation induced by fragmented HA enhances c-Met expression and tyrosine phosphorylation in human chondrosarcoma cells. Taken together, these studies establish a signal transduction cascade or cross-talk emanating from CD44 to c-Met.  相似文献   
108.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   
109.
A number of alkoxycarbonylisourea derivatives were synthesized and their plant growth-promoting activities examined by the rice (Oryza sativa) seedling test. Isourea compounds with an appropriate substituent such as a halogen atom or a methyl, ethyl or methoxy group at the para-position on a benzene ring in 1-alkoxycarbonyl-2-alkyl-3-phenylcarbamoylisoureas promoted the growth of rice seedlings and acted as a highly active gibberellic acid-synergist when used in combination with gibberellic acid. The common structural requirements of isourea derivatives applied well for a growth promoter and a gibberellic acid-synergist.  相似文献   
110.
Endothelial function deteriorates with aging. On the other hand, exercise training improves the function of vascular endothelial cells. Endothelin-1 (ET-1), which is produced by vascular endothelial cells, has potent constrictor and proliferative activity in vascular smooth muscle cells and, therefore, has been implicated in regulation of vascular tonus and progression of atherosclerosis. We previously reported significantly higher plasma ET-1 concentration in middle-aged than in young humans, and recently we showed that plasma ET-1 concentration was significantly decreased by aerobic exercise training in healthy young humans. We hypothesized that plasma ET-1 concentration increases with age, even in healthy adults, and that lifestyle modification (i.e., exercise) can reduce plasma ET-1 concentration in previously sedentary older adults. We measured plasma ET-1 concentration in healthy young women (21-28 yr old), healthy middle-aged women (31-47 yr old), and healthy older women (61-69 yr old). The plasma level of ET-1 significantly increased with aging (1.02 +/- 0.08, 1.33 +/- 0.11, and 2.90 +/- 0.20 pg/ml in young, middle-aged, and older women, respectively). Thus plasma ET-1 concentration was markedly higher in healthy older women than in healthy young or middle-aged women (by approximately 3- and 2-fold, respectively). In healthy older women, we also measured plasma ET-1 concentration after 3 mo of aerobic exercise (cycling on a leg ergometer at 80% of ventilatory threshold for 30 min, 5 days/wk). Regular exercise significantly decreased plasma ET-1 concentration in the healthy older women (2.22 +/- 0.16 pg/ml, P < 0.01) and also significantly reduced their blood pressure. The present study suggests that regular aerobic-endurance exercise reduces plasma ET-1 concentration in older humans, and this reduction in plasma ET-1 concentration may have beneficial effects on the cardiovascular system (i.e., prevention of progression of hypertension and/or atherosclerosis by endogenous ET-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号