首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2018年   7篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   30篇
  2012年   14篇
  2011年   19篇
  2010年   21篇
  2009年   14篇
  2008年   35篇
  2007年   23篇
  2006年   16篇
  2005年   23篇
  2004年   23篇
  2003年   24篇
  2002年   5篇
  2001年   6篇
  2000年   10篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
331.
332.
333.
Overlapping functions of the two talin homologues in Dictyostelium   总被引:1,自引:0,他引:1       下载免费PDF全文
Talin is a cytoskeletal protein involved in constructing and regulating focal adhesions in animal cells. The cellular slime mold Dictyostelium discoideum has two talin homologues, talA and talB, and earlier studies have characterized the single knockout mutants. talA(-) cells show reduced adhesion to the substrates and slightly impaired cytokinesis leading to a high proportion of multinucleated cells in the vegetative stage, while the development is normal. In contrast, talB(-) cells are characterized by reduced motility in the developmental stage, and they are arrested at the tight-mound stage. Here, we created and analyzed a double mutant with a disruption of both talA and talB. Defects in adhesion to the substrates, cytokinesis, and development were more severe in cells with a disruption of both talA and talB. The talA(-) talB(-) cells failed to attach to the substrates in the vegetative stage, exhibited a higher proportion of multinucleated cells than talA(-) cells, and showed more-reduced motility during the development and an earlier developmental arrest than talB(-) cells at the loose-mound stage. Moreover, overexpression of either talA or talB compensated for the loss of the other talin, respectively. The analysis of talA(-) talB(-) cells also revealed that talin was required for the formation of paxillin-rich adhesion sites and that there was another adhesion mechanism which is independent of talin in the developmental stage. This is the first study demonstrating overlapping functions of two talin homologues, and our data further indicate the importance of talin.  相似文献   
334.
The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.  相似文献   
335.
NBT-II cells on collagen-coated substrates move rapidly and persistently, maintaining a semi-circular shape with a large lamellipodium, in a manner similar to fish keratocytes. The inhibitor of phospholipase D (PLD), n-butanol, completely blocked the migration and disturbed the characteristic localization of actin along the edge of lamellipodia. To investigate the functional difference between the two isozymes of PLD (PLD1 and PLD2), we transfected NBT-II cells with vectors expressing shRNA to deplete PLD1 or PLD2. Depletion of both PLD1 and 2 by RNA interference reduced the velocity of the migration, but depletion of PLD2 inhibited motility more severely than that of PLD1. Furthermore, GFP-PLD2 was localized to the protruding regions of lamellipodia in migrating cells. Thus, PLD is essential for the maintenance of keratocyte-like locomotion of NBT-II cells, presumably by regulating the actin cytoskeleton.  相似文献   
336.
Transacting factors often form homo- and heterodimers and regulate various targets, the type of regulation depending on the dimeric combination. The WUS and TALE subfamilies are two atypical homeodomains in plants. A homeodomain mediates sequence-specific binding to its target DNA and usually consists of 60 amino acid residues, whereas atypical homeodomains have extra amino acid residues in the well-conserved region. The genes OsWUS and OsPRS, which encode atypical homeodomain proteins from the WUS subfamily, and OsBEL and OSH15, which encode those from the TALE subfamily, were isolated from rice and tested for their interactions by yeast two-hybrid analysis. OsWUS and OsPRS formed homodimers and formed heterodimers with each other but did not form dimers with the TALE family homeodomain proteins OSH15 or OsBEL. Likewise, OSH15 and OsBEL formed homodimers and heterodimers but did not form dimers with the WUS family homeodomain proteins OsWUS and OsPRS. These findings suggest that the combinations of dimers are well correlated with the classification of these proteins on the basis of sequence similarity. RT-PCR analysis revealed that expression of OsWUS and OsPRS was detected in the same organs, namely floral buds, roots, and suspension cells. Therefore, it is possible that the proteins encoded by both of these genes function as homo- and heterodimers in planta. These results suggest that, during the evolution of these subfamilies, various combinations of dimers within proteins encoded by paralogous genes were formed and generated independent regulatory networks that enabled complex patterns of plant development.  相似文献   
337.
PEGylated gold nanoparticles (diameter: 20 nm) possessing various functionalities of lactose ligand on the distal end of tethered PEG ranging from 0 to 65% were prepared to explore the effect of ligand density of the nanoparticles on their lectin binding property. UV-visible spectra of the aqueous solution of the nanoparticles revealed that the strong steric stabilization property of the PEG layer lends the nanoparticles high dispersion stability even under the physiological salt concentration (ionic strength, I = 0.15 M). The number of PEG strands on a single particle was determined to be 520 from thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) observation under controlled acceleration voltage revealed the thickness of the PEG layer on the nanoparticle to be approximately 7 nm. The area occupied by a single lactose molecule on the surface of PEGylated gold nanoparticles was then calculated based on TGA and SEM results and was varied in the range of 10-34 nm2 depending on the lactose functionality (65 approximately 20%). PEGylated gold nanoparticles with 40% and 65% lactose functionality showed a selective and time-dependent aggregation in phosphate buffer with the addition of Ricinus communis agglutinin (RCA120) lectin, a bivalent galactose-specific protein. The aggregates can be completely redispersed by adding an excess amount of galactose. Time-lapse monitoring of UV-visible spectra at 600-750 nm revealed that the aggregation of PEGylated gold nanoparticles was accelerated with an increase in both RCA120 concentration in the solution and the lactose density of the nanoparticles. Furthermore, the sensitivity of lectin detection could be controlled by the regulation of lactose density on the particle surface. Interestingly, there was a critical lactose density (>20%) observed to induce detectable particle aggregation, indicating that the interaction between the particles is triggered by the multimolecular bridging via lectin molecules.  相似文献   
338.
Choke diseases were surveyed in two closely related grass species, Agropyron ciliare var. minus and Agropyron tsukushiense var. transiens, in Shiga Prefecture, Japan. Perithecia and ascospores were not observed in either case. Stromata on A. ciliare var. minus enclosed and sterilized young inflorescences, as in the typical choke symptoms by Epichlo? typhina. On the other hand stromata on A. tsukusiense var. transiens thinly covered mature spikes with white epiphyllous hyphae, as in stromata of Ephelis spp. The fungal isolates produced typical Neotyphodium-type conidia. Molecular phylogenetic analyses using the beta-tubulin gene (tubB) indicated that the two Agropyron species are infected with the species grouping into a novel single clade among Epichlo? species and they are closely related to a haploid of hybrid Neotyphodium species. The host plant features may be the cause of the differences between stromata of A. ciliare var. minus and A. tsukushiense var.  相似文献   
339.
Heterosigma akashiwo virus (HaV) is a large double-stranded DNA virus infecting the single-cell bloom-forming raphidophyte (golden brown alga) H. akashiwo. A molecular phylogenetic sequence analysis of HaV DNA polymerase showed that it forms a sister group with Phycodnaviridae algal viruses. All 10 examined HaV strains, which had distinct intraspecies host specificities, included an intein (protein intron) in their DNA polymerase genes. The 232-amino-acid inteins differed from each other by no more than a single nucleotide change. All inteins were present at the same conserved position, coding for an active-site motif, which also includes inteins in mimivirus (a very large double-stranded DNA virus of amoebae) and in several archaeal DNA polymerase genes. The HaV intein is closely related to the mimivirus intein, and both are apparently monophyletic to the archaeal inteins. These observations suggest the occurrence of horizontal transfers of inteins between viruses of different families and between archaea and viruses and reveal that viruses might be reservoirs and intermediates in horizontal transmissions of inteins. The homing endonuclease domain of the HaV intein alleles is mostly deleted. The mechanism keeping their sequences basically identical in HaV strains specific for different hosts is yet unknown. One possibility is that rapid and local changes in the HaV genome change its host specificity. This is the first report of inteins found in viruses infecting eukaryotic algae.  相似文献   
340.
Diatoms are a major phytoplankton group that play important roles in maintaining oxygen levels in the atmosphere and sustaining the primary nutritional production of the aquatic environment. Among diatoms, the genus Chaetoceros is one of the most abundant and widespread. Temperature, climate, salinity, nutrients, and predators were regarded as important factors controlling the abundance and population dynamics of diatoms. Here we show that a viral infection can occur in the genus Chaetoceros and should therefore be considered as a potential mortality source. Chaetoceros salsugineum nuclear inclusion virus (CsNIV) is a 38-nm icosahedral virus that replicates within the nucleus of C. salsugineum. The latent period was estimated to be between 12 and 24 h, with a burst size of 325 infectious units per host cell. CsNIV has a genome structure unlike that of other viruses that have been described. It consists of a single molecule of covalently closed circular single-stranded DNA (ssDNA; 6,005 nucleotides), as well as a segment of linear ssDNA (997 nucleotides). The linear segment is complementary to a portion of the closed circle creating a partially double-stranded genome. Sequence analysis reveals a low but significant similarity to the replicase of circoviruses that have a covalently closed circular ssDNA genome. This new host-virus system will be useful for investigating the ecological relationships between bloom-forming diatoms and other viruses in the marine system. Our study supports the view that, given the diversity and abundance of plankton, the ocean is a treasury of undiscovered viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号