首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2018年   7篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   30篇
  2012年   14篇
  2011年   19篇
  2010年   21篇
  2009年   14篇
  2008年   35篇
  2007年   23篇
  2006年   16篇
  2005年   23篇
  2004年   23篇
  2003年   24篇
  2002年   5篇
  2001年   6篇
  2000年   10篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有384条查询结果,搜索用时 62 毫秒
31.
A novel sensing method based on surface plasmon resonance (SPR) was developed for the highly sensitive quantification of low molecular weight (LMW) analytes (colloidal Au replacement assay). Gold nanoparticles (diameter = 20 nm) functionalized with lactosyl-poly(ethylene glycol) (PEG) were prepared and were specifically adsorbed onto a Ricinus communis agglutinin (RCA120)-immobilized SPR sensor chip surface. Subsequent injection of free d-galactose elicited the elution of the preadsorbed lactosyl-PEGylated gold nanoparticles in a manner proportional to the galactose concentration, achieving a substantial and quantitative analysis over a wide range of galactose concentrations (0.1-50 ppm). This method of d-galactose sensing through the substituted elution of preadsorbed nanoparticles from the sensor chip surface would be applicable for the highly sensitive SPR quantification of various LMW analytes, which are known to be difficult to detect by the conventional SPR sensing regime.  相似文献   
32.
33.
MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses (‘giruses'') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from ‘Candidatus Amoebophilus asiaticus'', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world.  相似文献   
34.
35.
High mobility group box 1 (HMGB1) is a novel late mediator of inflammatory responses that contributes to endotoxin-induced acute lung injury and sepsis-associated lethality. Although acute lung injury is a frequent complication of severe blood loss, the contribution of HMGB1 to organ system dysfunction in this setting has not been investigated. In this study, HMGB1 was detected in pulmonary endothelial cells and macrophages under baseline conditions. After hemorrhage, in addition to positively staining endothelial cells and macrophages, neutrophils expressing HMGB1 were present in the lungs. HMGB1 expression in the lung was found to be increased within 4 h of hemorrhage and then remained elevated for more than 72 h after blood loss. Neutrophils appeared to contribute to the increase in posthemorrhage pulmonary HMGB1 expression since no change in lung HMGB1 levels was found after hemorrhage in mice made neutropenic with cyclophosphamide. Plasma concentrations of HMGB1 also increased after hemorrhage. Blockade of HMGB1 by administration of anti-HMGB1 antibodies prevented hemorrhage-induced increases in nuclear translocation of NF-kappa B in the lungs and pulmonary levels of proinflammatory cytokines, including keratinocyte-derived chemokine, IL-6, and IL-1 beta. Similarly, both the accumulation of neutrophils in the lung as well as enhanced lung permeability were reduced when anti-HMGB1 antibodies were injected after hemorrhage. These results demonstrate that hemorrhage results in increased HMGB1 expression in the lungs, primarily through neutrophil sources, and that HMGB1 participates in hemorrhage-induced acute lung injury.  相似文献   
36.
Reexpansion of a collapsed lung increases the microvascular permeability and causes reexpansion pulmonary edema. Neutrophils and their products have been implicated in the development of this phenomenon. The small GTP-binding proteins Rho and its target Rho-kinase (ROCK) regulate endothelial permeability, although their roles in reexpansion pulmonary edema remain unclear. We studied the contribution of ROCK to pulmonary endothelial and epithelial permeability in a rabbit model of this disorder. Endothelial and epithelial permeability was assessed by measuring the tissue-to-plasma (T/P) and bronchoalveolar lavage (BAL) fluid-to-plasma (B/P) ratios with (125)I-labeled albumin. After intratracheal instillation of (125)I-albumin, epithelial permeability was also assessed from the plasma leak (PL) index, the ratio of (125)I-albumin in plasma/total amount of instilled (125)I-albumin. T/P, B/P, and PL index were significantly increased in the reexpanded lung. These increases were attenuated by pretreatment with Y-27632, a specific ROCK inhibitor. However, neutrophil influx, neutrophil elastase activity, and malondialdehyde concentrations in BAL fluid collected from the reexpanded lung were not changed by Y-27632. In endothelial monolayers, Y-27632 significantly attenuated the H(2)O(2)-induced increase in permeability and mitigated the morphological changes in the actin microfilament cytoskeleton of endothelial cells. These in vivo and in vitro observations suggest that the Rho/ROCK pathway contributes to the increase in alveolar barrier permeability associated with reexpansion pulmonary edema.  相似文献   
37.
Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A, MHCK B, and MHCK C) display differential localization patterns in living cells. We have created a collection of single, double, and triple gene knockout cell lines for this family of kinases. Analysis of these lines reveals that three MHC kinases appear to represent the majority of cellular activity capable of driving myosin II filament disassembly, and reveals that cytokinesis defects increase with the number of kinases disrupted. Using biochemical fractionation of cytoskeletons and in vivo measurements via fluorescence recovery after photobleaching (FRAP), we find that myosin II overassembly increases incrementally in the mutants, with the MHCK A(-)/B(-)/C(-) triple mutant showing severe myosin II overassembly. These studies suggest that the full complement of MHC kinases that significantly contribute to growth phase and cytokinesis myosin II disassembly in this organism has now been identified.  相似文献   
38.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   
39.
Branched-chain alpha-keto acid dehydrogenase (BCKDH) complex catalyzes the committed step of the catabolism of branched-chain amino acids (BCAA). The liver cirrhosis chemically induced in rats raised the activity of hepatic BCKDH complex and decreased plasma BCAA and branched-chain alpha-keto acid concentrations, suggesting that the BCAA requirement is increased in liver cirrhosis. Since the effects of liver cirrhosis on the BCKDH complex in human liver are different from those in rat liver, further studies are needed to clarify the differences between rats and humans. In the valine catabolic pathway, crotonase and beta-hydroxyisobutyryl-CoA hydrolase are very important to regulate the toxic concentration of mitochondrial methacrylyl-CoA, which occurs in the middle part of valine pathway and highly reacts with free thiol compounds. Both enzyme activities in human and rat livers are very high compared to that of BCKDH complex. It has been found that both enzyme activities in human livers were significantly reduced by liver cirrhosis and hepatocellular carcinoma, suggesting a decrease in the capability to dispose methacrylyl-CoA. The findings described here suggest that alterations in hepatic enzyme activities in the BCAA catabolism are associated with liver failure.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号