首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   7篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   13篇
  2013年   11篇
  2012年   26篇
  2011年   22篇
  2010年   10篇
  2009年   12篇
  2008年   26篇
  2007年   18篇
  2006年   16篇
  2005年   13篇
  2004年   10篇
  2003年   14篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1998年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有289条查询结果,搜索用时 296 毫秒
121.

Purpose

We investigated that preoperative membranous urethral length (MUL) would be associated with the recovery of urinary continence after robot-assisted laparoscopic prostatectomy (RALP).

Patients and methods

We studied 204 patients who underwent RALP between May 2013 and March 2016. All patients underwent pelvic magnetic resonance imaging (MRI) preoperatively to measure MUL. Urinary continence was defined as the use of one pad or less (safety pad). The 204 patients were divided into two groups: continence group, those who achieved recovery of continence at 3, 6, and 12?months after RALP, and incontinence group, those who did not. We retrospectively analyzed the patients in terms of preoperative clinical factors including age, body mass index (BMI), estimated prostate volume, neurovascular bundle salvage, history of preoperative hormonal therapy, and MUL.

Results

The safety pad use rate was 69.6%, 86.9%, and 91.1% at 3, 6, and 12?months, respectively. On univariate and multivariate analyses, MUL were significant factors in every term of recovery of urinary continence in both groups. According to the receiver operating characteristic (ROC) curve analysis, the preoperative MUL that could best predict early recovery of urinary continence at 3 months after RALP was 12?mm.

Conclusions

We suggest that preoperative MUL >?12?mm would be a predictor of early recovery of urinary continence after RALP.
  相似文献   
122.
We previously found a chemical, designated as NJ15, which inhibited both auxin and brassinosteroid responses in dark-grown Arabidopsis. To study its mode of action, we performed a phenotypic screening of NJ15-low-sensitive lines among mutant pools of Arabidopsis. One line (f127) showed clear NJ15-low-sensitivity in terms of hypocotyl elongation and shoot gravitropism. After further testing, it was determined that DCR, an enzyme involved in cutin polymerization, had lost its function in the mutant, which caused its low sensitivity to NJ15. Fatty acids are the base materials for polymers such as cutin and cuticular wax. We confirmed that NJ15 affects fatty acid biosynthesis, and that it does differently from cafenstrole, a known inhibitor of cuticular wax formation. Based on these results, we propose that the target of NJ15 is likely located within the cutin polymer formation pathway.

Abbreviations: Caf: cafenstrole; DEG: differentially expressed gene; FDR: false discovery rate; FOX: full length cDNA-overexpressor; VLCFA: very-long-chain fatty acid  相似文献   

123.
A highly potent and well-balanced dual agonist for the EP2 and EP3 receptors is described. Optimization of the lead compound was accomplished in consideration of the relative agonist activity against each EP subtype receptor and the pharmacokinetic profile. As the result, 2-[(2-{(1R,2R)-2-[(1E,4S)-5-cyclopentyl-4-hydroxy-4-methyl-1-penten-1-yl]-5-oxocyclopentyl}eth-yl)thio]-1,3-thiazole-4-carboxylic acid (10) showed excellent potency (human EC50 EP2?=?1.1?nM, EP3?=?1.0?nM) with acceptable selectivity over the EP1 and EP4 subtypes (>2000-fold). Further fine-tuning of compound 10 led to identification of ONO-8055 as a clinical candidate. ONO-8055 was effective at an extremely low dose (0.01?mg/kg, po, bid) in rats, and dose-dependently improved voiding dysfunction in a monkey model of underactive bladder (UAB). ONO-8055 is expected to be a novel and highly promising drug for UAB.  相似文献   
124.
125.
The solubility prediction method for protected peptides was successfully applied to relatively small peptide fragments of human hemoglobin alpha-chain (123-136) which contained various polar amino acid residues such as Asp(OBzl), Glu(OBzl), Lys(Z), Ser(Bzl), and Thr(Bzl). As reported previously for hydrophobic peptides and human proinsulin C-peptide fragments, solubility data indicated that the insolubility of protected peptides having a mean value of Pc value below 0.90 appeared to begin at the octa- or nonapeptide sequence level and that beta-sheet structure played an important role in the insolubility of peptides. When a peptide has a beta-sheet structure in the solid state, we can clearly determine the critical chain length for peptide insolubility, the solubility dependence on solvent properties, and the solubility independence of amino acid compositions of peptides.  相似文献   
126.
Lithium, a drug in the treatment of bipolar disorder, modulates many aspects of neuronal developmental processes such as neurogenesis, survival, and neuritogenesis. However, the underlying mechanism still remains to be understood. Here, we show that lithium upregulates the expression of sorting nexin 3 (SNX3), one of the Phox (PX) domain-containing proteins involved in endosomal sorting, and regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The inhibition of SNX3 function by its knockdown decreases lithium-induced outgrowth of neurites. Transfection of the full-length SNX3 construct into cells facilitates the outgrowth. We also find that the C-terminus, as well as the PX domain, of SNX3 has a functional binding sequence with phosphatidylinositol monophosphates. Transfection of the C-terminal deletion mutant or only the C-terminus does not have an effect on the outgrowth. These results suggest that SNX3, a protein upregulated by lithium, is an as yet unknown regulator of neurite formation and that it contains another functional phosphatidylinositol phosphate-binding region at the C-terminus.  相似文献   
127.
Oligodendrocyte precursor cells differentiate to produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. Many aspects of differentiation are regulated by multiple extracellular signals. However, their intracellular signalings remain elusive. We show that Rab35 and its effector, ACAP2, a GTPase-activating protein that switches off Arf6 activity, negatively regulate oligodendrocyte morphological differentiation. Knockdown of Rab35 or ACAP2 with their respective small interfering RNAs promotes differentiation. As differentiation initiates, the activities of Rab35 and ACAP2 are down-regulated. The activity of Arf6, in contrast, is up-regulated. Arf6 knockdown inhibits differentiation, indicating that Rab35 and ACAP2 negatively regulate differentiation by down-regulating Arf6. Importantly, as differentiation proceeds, the activity of cytohesin-2, a guanine nucleotide exchange factor that switches on Arf6 activity, is up-regulated. Pharmacological inhibition of cytohesin-2 inhibits differentiation, suggesting that cytohesin-2 promotes differentiation by activating Arf6. Furthermore, using oligodendrocyte-neuronal cocultures, we find that knockdown of Rab35 or ACAP2 promotes myelination, whereas inhibition of cytohesin-2 or knockdown of Arf6 inhibits myelination. Thus Rab35/ACAP2 and cytohesin-2 antagonistically control oligodendrocyte differentiation and myelination through Arf6 regulation, presenting a unique small GTPase on/off switching mechanism.  相似文献   
128.
Development of metanephric kidney begins with ureteric bud outgrowth from the Wolffian duct (WD). GDNF is believed to be a crucial positive signal in the budding process, but the negative regulation of this process remains unclear. Here, we examined the role of activin A, a member of TGF-beta family, in bud formation using an in vitro WD culture system. When cultured with the surrounding mesonephros, WDs formed many ectopic buds in response to GDNF. While the activin signaling pathway is normally active along the non-budding WD (as measured by expression of activin A and phospho-Smad2/3), activin A was absent and phospho-Smad2/3 was undetectable in the ectopic buds induced by GDNF. To examine the role of activin A in bud formation, we attempted to inactivate activin action. Interestingly, the addition of neutralizing anti-activin A antibody potentiated GDNF action. To further clarify the role of activin A, we also tested the effect of activin blockade on the WD cultured in the absence of mesonephros. WDs without mesonephros did not form ectopic buds even in the presence of GDNF. In contrast, blockade of activin action with a variety of agents acting through different mechanisms (natural antagonist, neutralizing antibodies, siRNA) enabled GDNF to induce ectopic buds. Inhibition of GDNF-induced bud formation by activin A was accompanied by inhibition of cell proliferation, reduced expression of Pax-2, and decreased phosphorylation of PI3-kinase and MAP kinase in the WD. Our data suggest that activin A is an endogenous inhibitor of bud formation and that cancellation of activin A autocrine action may be critical for the initiation of this process.  相似文献   
129.
Bispecific antibodies (bsAbs) have the potential to extend binding selectivity, increase avidity and exert potent cytotoxicity due to the combination of dual specificities. scFv2-Fc type of single-gene-encoded bispecific antibody, composed of two different single-chain Fvs and an Fc, has been reported to be capable of binding to different antigens. The aim of this study was to determine the effect of fucose removal on effector functions of scFv2-Fc since fucose depletion from oligosaccharide of human IgG1 and scFv-Fc results in significant enhancement of ADCC. We generated novel single-gene-encoded bsAb with dual specificity against tumor associated glycoprotein (TAG)-72 and MUC1 mucin as fucose-negative scFv2-Fc from alpha-1,6-fucosyltransferase knock-out CHO cells and a highly fucosylated scFv2-Fc comparator from parental CHO cells. Expression, assembly and the antigen-binding activity of the scFv2-Fc were not influenced by removal of fucose. The fucose negative scFv2-Fc bound with higher avidity to FcgammaRIIIa and enhanced ADCC compared to the highly fucosylated scFv2-Fc. These results demonstrate that ADCC-enhancement by removal of fucose is effective in not only whole IgG1 and scFv-Fc, but also scFv2-Fc targeting two different antigens, and thus increases the potential of fucose-negative scFv2-Fcs as novel therapeutic candidates.  相似文献   
130.
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for soluble class III semaphorins, whereas plexin-A1 has multiple functions in chick cardiogenesis as a receptor for the transmembrane semaphorin, Sema6D, independent of neuropilins. Additionally, plexin-A1 has been implicated in dendritic cell function in the immune system. However, the role of plexin-A1 in vivo, and the mechanisms underlying its pleiotropic functions, remain unclear. Here, we generated plexin-A1-deficient (plexin-A1(-/-)) mice and identified its important roles, not only in immune responses, but also in bone homeostasis. Furthermore, we show that plexin-A1 associates with the triggering receptor expressed on myeloid cells-2 (Trem-2), linking semaphorin-signalling to the immuno-receptor tyrosine-based activation motif (ITAM)-bearing adaptor protein, DAP12. These findings reveal an unexpected role for plexin-A1 and present a novel signalling mechanism for exerting the pleiotropic functions of semaphorins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号