首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   7篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   10篇
  2012年   24篇
  2011年   21篇
  2010年   9篇
  2009年   12篇
  2008年   23篇
  2007年   18篇
  2006年   15篇
  2005年   12篇
  2004年   9篇
  2003年   14篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1998年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有275条查询结果,搜索用时 312 毫秒
91.
Anti-glucose-6-phosphate isomerase (GPI) antibodies are known to be arthritogenic autoantibodies in K/B×N mice, although some groups have reported that few healthy humans retain these antibodies. The expression of Fcγ receptors (FcγRs) is genetically regulated and has strong implications for the development of experimental arthritis. The interaction between immune complexes and FcγRs might therefore be involved in the pathogenesis of some arthritic conditions. To explore the relationship between functional polymorphisms in FcγRs (FCGR3A-158V/F and FCGR2A-131H/R) and arthritis in individuals positive for anti-GPI antibodies, we evaluated these individuals with respect to FCGR genotype. Genotyping for FCGR3A-158V/F and FCGR2A-131H/R was performed by PCR amplification of the polymorphic site, followed by site specific restriction digestion using the genome of 187 Japanese patients with rheumatoid arthritis (including 23 who were anti-GPI antibody positive) and 158 Japanese healthy individuals (including nine who were anti-GPI antibody positive). We report here on the association of FCGR3A-158V/F functional polymorphism with anti-GPI antibody positive status. Eight out of nine healthy individuals who were positive for anti-GPI antibodies possessed the homozygous, low affinity genotype FCGR3A-158F (odds ratio = 0.09, 95% confidence interval 0.01–0.89; P = 0.0199), and probably were 'protected' from arthritogenic antibodies. Moreover, among those who were homozygous for the high affinity genotype FCGR3A-158V/V, there were clear differences in anti-human and anti-rabbit GPI titres between patients with rheumatoid arthritis and healthy subjects (P = 0.0027 and P = 0.0015, respectively). Our findings provide a molecular model of the genetic regulation of autoantibody-induced arthritis by allele-specific affinity of the FcγRs.  相似文献   
92.
While a mother’s excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.  相似文献   
93.
The cellular events that precede myelination in the peripheral nervous system require rapid and dynamic morphological changes in the Schwann cell. These events are thought to be mainly controlled by axonal signals. But how signals on the axons are coordinately organized and transduced to promote proliferation, migration, radial sorting, and myelination is unknown. We describe that the axonal signal neuregulin-1 (NRG1) controls Schwann cell migration via activation of the atypical Dock180-related guanine nucleotide exchange factor (GEF) Dock7 and subsequent activation of the Rho guanine triphosphatases (GTPases) Rac1 and Cdc42 and the downstream c-Jun N-terminal kinase. We show that the NRG1 receptor ErbB2 directly binds and activates Dock7 by phosphorylating Tyr-1118. Dock7 knockdown, or expression of Dock7 harboring the Tyr-1118-to-Phe mutation in Schwann cells, attenuates the effects of NRG1. Thus, Dock7 functions as an intracellular substrate for ErbB2 to promote Schwann cell migration. This provides an unanticipated mechanism through which ligand-dependent tyrosine phosphorylation can trigger the activation of Rho GTPase-GEFs of the Dock180 family.  相似文献   
94.

Background

In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species), deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total), and character subsets therein, to resolve relationships among 123 species representing 27 (of 33) superfamilies and 55 (of 100) families of Ditrysia under maximum likelihood analysis.

Results

Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (P < 0.05) and Macrolepidoptera excluding Noctuoidea and Bombycoidea sensu lato (P ≤ 0.005), and nearly so for the superfamily Drepanoidea as currently defined (P < 0.08). Superfamilies are typically recovered or nearly so, but usually without strong support. Relationships within superfamilies and families, however, are often robustly resolved. We provide some of the first strong molecular evidence on deeper splits within Pyraloidea, Tortricoidea, Geometroidea, Noctuoidea and others. Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict), including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3). As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data.

Conclusion

Our results (a) corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b) demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c) resolve the majority of family and subfamily relationships within superfamilies as thus far sampled. Much further gene and taxon sampling will be needed, however, to strongly resolve individual deeper nodes.  相似文献   
95.
In this paper, we describe the synthesis of (+)-(1R( *),2R( *))-2-[(1S( *))-1-amino-1-carboxy-2-(9H-xanthen-9-yl)-ethyl]-1-fluorocyclopropanecarboxylic acid (+)-16a, a compound, that is, fluorinated at the alpha position of the carboxylic acid in the cyclopropane ring of a group II mGluRs antagonist, 1 (LY341495), using a previously reported stereoselective cyclopropanation reaction. The fluorinated compound (+)-16a exhibited almost the same affinity (IC(50)=3.49 nM) for mGluR2 as 1 but had a superior pharmacokinetic profile. Furthermore, a marked elevation of the plasma levels of (+)-16a was observed following the administration of a prodrug, (+)-17.  相似文献   
96.
5-Fluoro-2'-deoxyuridine (FUdR), a potent anticancer agent, exerts its effects by inhibiting thymidylate synthase, an essential machinery for DNA synthesis in cell proliferation. Also, cell death is caused by FUdR, primarily due to an imbalance in the nucleotide pool resulting from this enzyme inhibition. We have investigated the cancer cell death induced by FUdR, focusing on its molecular mechanisms. Using mouse mammary tumor FM3A cell lines, the original clone F28-7 and its variant F28-7-A cells, we previously reported an interesting observation that FUdR induces a necrotic morphology in F28-7, but induces, in contrast, an apoptotic morphology in F28-7-A cells. In the present study, to understand the molecular mechanisms underlying these differential cell deaths, i.e., necrosis and apoptosis, we investigated the gene expression changes occurring in these processes. Using the cDNA microarray technology, we found 215 genes being expressed differentially in the necrosis and apoptosis. Further analysis revealed differences between these cell lines in terms of the expressions of both a cluster of heat shock protein (HSP)-related genes and a cluster of apoptosis-related genes. Notably, inhibition of HSP90 in F28-7 cells caused a shift from the FUdR-induced necrosis into apoptosis. These findings are expected to lead to a better understanding of this anticancer drug FUdR for its molecular mechanisms and also of the general biological issue, necrosis and apoptosis.  相似文献   
97.
We observed the change in the physiological state of Escherichia coli cells at the initial stage for establishing a new symbiotic relationship with Dictyostelium discoideum cells. For the physiological state, we monitored green fluorescence intensity due to a green fluorescent protein (GFP) gene integrated into the chromosome by flow cytometry (FCM). On co-cultivation of the two species, a new population of E. coli cells with increased GFP concentration appeared, and when the formation of mucoidal colonies housing the coexisting two species began, most E. coli cells were from the new population. Further experiments suggest that the physiological change is induced by interaction with D. discoideum cells and is reversible, although the processes of the changes in both directions seem to proceed gradually. The observed phenotypic plasticity, together with natural selection under a co-cultivation environment, may be important for leading to the evolution of a new symbiotic system.  相似文献   
98.
99.
Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales , Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter -related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect.  相似文献   
100.

Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into l-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号