首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8420篇
  免费   478篇
  国内免费   6篇
  2022年   42篇
  2021年   72篇
  2020年   42篇
  2019年   46篇
  2018年   91篇
  2017年   78篇
  2016年   142篇
  2015年   194篇
  2014年   235篇
  2013年   829篇
  2012年   415篇
  2011年   500篇
  2010年   293篇
  2009年   275篇
  2008年   486篇
  2007年   495篇
  2006年   512篇
  2005年   520篇
  2004年   482篇
  2003年   471篇
  2002年   543篇
  2001年   104篇
  2000年   89篇
  1999年   99篇
  1998年   143篇
  1997年   106篇
  1996年   100篇
  1995年   100篇
  1994年   84篇
  1993年   129篇
  1992年   103篇
  1991年   76篇
  1990年   61篇
  1989年   78篇
  1988年   59篇
  1987年   56篇
  1986年   54篇
  1985年   58篇
  1984年   69篇
  1983年   45篇
  1982年   81篇
  1981年   59篇
  1980年   63篇
  1979年   35篇
  1978年   43篇
  1977年   32篇
  1976年   36篇
  1974年   22篇
  1973年   28篇
  1972年   22篇
排序方式: 共有8904条查询结果,搜索用时 31 毫秒
991.
Ribosomal P0, P1, and P2 proteins, together with the conserved domain of 28 S rRNA, constitute a major part of the GTPase-associated center in eukaryotic ribosomes. We investigated the mode of assembly in vitro by using various truncation mutants of silkworm P0. When compared with wild type (WT)-P0, the C-terminal truncation mutants CDelta65 and CDelta81 showed markedly reduced binding ability to P1 and P2, which was offset by the addition of an rRNA fragment covering the P0.P1-P2 binding site. The mutant CDelta107 lost the P1/P2 binding activity, whereas it retained the rRNA binding. In contrast, the N-terminal truncation mutants NDelta21-NDelta92 completely lost the rRNA binding, although they retained P1/P2 binding capability, implying an essential role of the N terminus of P0 for rRNA binding. The P0 mutants NDelta6, NDelta14, and CDelta18-CDelta81, together with P1/P2 and eL12, bound to the Escherichia coli core 50 S subunits deficient in L10.L7/L12 complex and L11. Analysis of incorporation of (32)P-labeled P1/P2 into the 50 S subunits with WT-P0 and CDelta81 by sedimentation analysis indicated that WT-P0 bound two copies of P1 and P2, but CDelta81 bound only one copy each. The hybrid ribosome with CDelta81 that appears to contain one P1-P2 heterodimer retained lower but considerable activities dependent on eukaryotic elongation factors. These results suggested that two P1-P2 dimers bind to close but separate regions on the C-terminal half of P0. The results were further confirmed by binding experiments using chimeric P0 mutants in which the C-terminal 81 or 107 amino acids were replaced with the homologous sequences of the archaebacterial P0.  相似文献   
992.
Viral infections and local production of cytokines probably contribute to the pathogenesis of Type 1 diabetes. The viral replicative intermediate double-stranded RNA (dsRNA, tested in the form of polyinosinic-polycytidylic acid, PIC), in combination with the cytokine interferon-gamma (IFN-gamma), triggers beta-cell apoptosis. We have previously observed by microarray analysis that PIC induces expression of several mRNAs encoding for genes downstream of Toll-like receptor 3 (TLR3) signaling pathway. In this report, we show that exposure of beta-cells to dsRNA in combination with IFN-alpha, -beta, or -gamma significantly increases apoptosis. Moreover, dsRNA induces TLR3 mRNA expression and activates NF-kappaB and the IFN-beta promoter in a TRIF-dependent manner. dsRNA also induces an early (1 h) and sustained increase in IFN-beta mRNA expression, and blocking IFN-beta with a specific antibody partially prevents PIC plus IFN-gamma-induced beta-cell death. On the other hand, dsRNA plus IFN-gamma does not induce apoptosis in INS-1E cells, and expression of TLR3 and type I IFNs mRNAs is not detected in these cells. Of note, disruption of the STAT-1 signaling pathway protects beta-cells against dsRNA plus IFN-gamma-induced beta-cell apoptosis. This study suggests that dsRNA plus IFN-gamma triggers beta-cell apoptosis by two complementary pathways, namely TLR3-TRIF-NF-kappaB and STAT-1.  相似文献   
993.
Valosin-containing protein (p97/VCP) has been proposed as playing crucial roles in a variety of physiological and pathological processes such as cancer and neurodegeneration. We previously showed that VCP(K524A), an ATPase activity-negative VCP mutant, induced vacuolization, accumulation of ubiquitinated proteins, and cell death, phenotypes commonly observed in neurodegenerative disorders. However, any regulatory mechanism of its ATPase activity has not yet been clarified. Here, we show that oxidative stress readily inactivates VCP ATPase activity. With liquid chromatography/tandem mass spectrometry, we found that at least three cysteine residues were modified by oxidative stress. Of them, the 522nd cysteine (Cys-522) was identified as the site responsible for the oxidative inactivation of VCP. VCP(C522T), a single-amino acid substitution mutant from cysteine to threonine, conferred almost complete resistance to the oxidative inactivation. In response to oxidative stress, VCP strengthened the interaction with Npl4 and Ufd1, both of which are essential in endoplasmic reticulum-associated protein degradation. Cys-522 is located in the second ATP binding motif and is highly conserved in multicellular but not unicellular organisms. Cdc48p (yeast VCP) has threonine in the corresponding amino acid, and it showed resistance to the oxidative inactivation in vitro. Furthermore, a yeast mutant (delta cdc48 + cdc48[T532C]) was shown to be susceptible to oxidants-induced growth inhibition and cell death. These results clearly demonstrate that VCP ATPase activity is regulated by the oxidative modification of the Cys-522 residue. This regulatory mechanism may play a key role in the conversion of oxidative stress to endoplasmic reticulum stress response in multicellular organisms and also in the pathological process of various neurodegenerative disorders.  相似文献   
994.
Heat stress (HS) induces activation of high-affinity sodium-dependent glucose transporter (SGLT1) in porcine renal LLC-PK(1) cells. In this study, we investigated the roles of SGLT1 activation in reorganization of zonula occludens-1 (ZO-1), a cytosolic tight junction (TJ) protein, after HS. HS (42 degrees C, 3 h) caused decrease in transepithelial electrical resistance (TER). Subsequent incubation at 37 degrees C for 12 h increased TER above pre-HS level. The treatment of phloridzin, a potent SGLT1 inhibitor, or the replacement of glucose with a nonmetabolizable glucose analog blocked the recovery of TER and increased the transepithelial flux of FITC-dextran (4,000 Da). Immunofluorescent staining of ZO-1 showed that HS diffused ZO-1 from cell contact to cytosolic sites. Furthermore, the fraction of ZO-1 was distributed from the Triton X-100 insoluble to the Triton X-100 soluble pool. After incubation at 37 degrees C for 12 h, cell contact and ZO-1 extractability with Triton X-100 returned to pre-HS conditions, but the recovery was completely prevented by phloridzin. Tyrosine kinases activity was increased by HS that was inhibited by phloridzin. Genistein and CGP77675, tyrosine kinases inhibitors, blocked the recovery of TER and increased the transepithelial flux of FITC-dextran. Furthermore, these inhibitors prevented the recovery of cell contact and ZO-1 extractability with Triton X-100 as same as phloridzin. These findings suggested that the activation of SGLT1 reorganized ZO-1 mediated by elevation of tyrosine kinases activity after heat injury.  相似文献   
995.
Phylogenetic analysis based on 16S rDNA sequences was performed on all type strains of the 14 validly described Methylobacterium species to ascertain the genealogic relationships among these species. The results showed that type strains of Methylobacterium were divided into two monophyletic groups whose members were distinct species with sequence similarity values greater than 97.0% between any two of the members in the same group. Only M. organophilum JCM 2833(T) and ATCC 27886(T) were not divided into those two groups. In particular, strains of M. dichloromethanicum and M. chloromethanicum exhibited extremely high similarity values (99.9 and 100%, respectively) with the type strain of M. extorquens. To clarify the relationships among Methylobacterium species in more detail, phylogenetic analysis based on the 5' end hyper-variable region of 16S rDNA (HV region), ribotyping analysis, fatty acid analysis, G+C content analysis and DNA-DNA hybridization experiments was performed on 58 strains of Methylobacterium species. Results of the ribotyping analysis and the phylogenetic analysis based on HV region sequences indicated that many Methylobacterium strains, including M. 'organophilum' DSM 760(T), have been erroneously identified. The DNA G+C content of Methylobacterium strains were between 68.1 and 71.3%. Results of whole-cell fatty-acid profiles showed that all strains contained 18 : 1omega7c as the primary fatty acid component (82.8-90.1%), with 16 : 0 and 18 : 0 as minor components. M. dichloromethanicum DSM 6343(T), M. chloromethanicum NCIMB 13688(T), and M. extorquens IAM 12631(T) exhibited high DNA-DNA relatedness values between each other (69-80%). M. lusitanum NCIMB 13779(T) also showed a close relationship with M. rhodesianum DSM 5687(T) at DNA-DNA relatedness levels of 89-92%. According to these results, many Methylobacterium strains should be reclassified, with M. dichloromethanicum and M. chloromethanicum regarded as a synonym of M. extorquens, and M. lusitanum a synonym for M. rhodesianum.  相似文献   
996.
Cisplatin causes nephropathy accompanied by two types of cell death, necrosis and apoptosis, according to its dosage. The mechanisms of necrosis are still unclear. In this study, we examined how high doses of cisplatin induce cell injury and whether a high affinity sodium-dependent glucose transporter (SGLT1) has a cytoprotective function in renal epithelial LLC-PK1 cells. Cisplatin decreased in transepithelial electrical resistance (TER) and increased in the number of necrotic dead cells in a time dependent manner. Phloridzin, a potent SGLT1 inhibitor, enhanced both TER decrease and increase of necrotic dead cells caused by cisplatin. Cisplatin increased in the intracellular nitric oxide, superoxide anion and peroxynitrite productions. Phloridzin enhanced the peroxynitrite production caused by cisplatin. The intracellular diffusion of ZO-1 and TER decrease caused by cisplatin were inhibited by N-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor. Protein kinase C was not involved in the cisplatin-induced injury. 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato iron (III) and reduced glutathione, peroxynitrite scavengers, inhibited the cisplatin-induced ZO-1 diffusion, TER decrease, and increase of necrotic dead cells. These results suggest that peroxynitrite is a key mediator in the nephrotoxicity caused by high doses of cisplatin. SGLT1 endogenously carries out the cytoprotective function by the reduction of peroxynitrite production.  相似文献   
997.
Air-liquid interface (ALI) is a microenvironment of aerodigestive tract. In our previous study, ALI promoted invasive growth of laryngeal squamous cell carcinoma (SCC); but its mechanism was unclear. Hypoxia is also related to cancer spread. Here we show that ALI with or without hypoxia accelerated invasive growth of laryngeal SCC cells, using collagen gel invasion assay. Submerged condition (SMC) without ALI did not induce the invasion with or without hypoxia. ALI enhanced expression of the following growth-, invasion-, and motility-related molecules in the cells with or without hypoxia more greatly than SMC: c-Met, Ras, mitogen-activated protein kinase cascade proteins (Raf-1, MEK-1, and ERK-1/2), matrix metalloproteinase-1, and filamin A. The data indicate that ALI promotes invasive growth of SCC cells by enhancement of the invasive growth-related molecules above, through mechanisms that differ from hypoxia, suggesting that ALI microenvironment should be taken into account for the study of cancer biology.  相似文献   
998.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   
999.
Connective tissue growth factor (CTGF) is induced by transforming growth factor-beta (TGF-beta) via Smad activation in mesangial cells. We recently reported that sphingosine 1-phosphate (S1P) induces CTGF expression in rat cultured mesangial cells. However, the mechanism by which S1P induces CTGF expression is unknown. The present study revealed that S1P-induced CTGF expression is mediated via pertussis toxin-insensitive pathways, which are involved in the activation of small GTPases of the Rho family and protein kinase C. We also showed by luciferase reporter assays and chromatin immunoprecipitation that S1P induces CTGF expression via Smad activation as TGF-beta does.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号