首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8174篇
  免费   426篇
  国内免费   6篇
  8606篇
  2022年   42篇
  2021年   72篇
  2020年   42篇
  2019年   46篇
  2018年   90篇
  2017年   78篇
  2016年   141篇
  2015年   193篇
  2014年   237篇
  2013年   811篇
  2012年   414篇
  2011年   496篇
  2010年   289篇
  2009年   273篇
  2008年   479篇
  2007年   488篇
  2006年   503篇
  2005年   508篇
  2004年   478篇
  2003年   464篇
  2002年   533篇
  2001年   90篇
  2000年   78篇
  1999年   94篇
  1998年   139篇
  1997年   104篇
  1996年   99篇
  1995年   93篇
  1994年   83篇
  1993年   121篇
  1992年   93篇
  1991年   60篇
  1990年   46篇
  1989年   62篇
  1988年   51篇
  1987年   53篇
  1986年   44篇
  1985年   47篇
  1984年   59篇
  1983年   37篇
  1982年   73篇
  1981年   55篇
  1980年   58篇
  1979年   29篇
  1978年   39篇
  1977年   26篇
  1976年   34篇
  1974年   20篇
  1973年   24篇
  1972年   20篇
排序方式: 共有8606条查询结果,搜索用时 46 毫秒
121.
122.

The attachment strength of the freshwater mussel Limnoperna fortunei against water flow was studied. Newton's expression successfully described the hydrodynamic drag force acting on the mussel with a drag coefficient value of 1.03. The drag‐resistant force (defined as hydrodynamic drag force at mussel detachment) was smaller than the detachment force measured using a tensile load test. A fairly good correlation was obtained between the drag‐resistant force and the number of secreted threads. The drag‐resistant force divided by the number of threads increased with shell size, suggesting that byssal thread strength increased with mussel growth. For the mussel specimens obtained from a water transmission pipe, thread width increased with shell size. However, thread width was not dependent on current velocity. There was no correlation between the number of secreted threads and shell length, which indicated that the number of secreted threads did not change with mussel size. Therefore, the water velocity needed to detach mussels increases with shell size of the mussel when the number of secreted threads is constant. The increases in the water velocity to detach mussels with larger shells suggests that the mussel becomes more resistant to water flow as it grows. It is estimated that a flow velocity of around lms‐1 is critical for attachment/detachment of a juvenile mussel with a shell length of a few millimeters and one hundred byssal threads.  相似文献   
123.
Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage.  相似文献   
124.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
125.
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.  相似文献   
126.
ERdj5 (also known as JPDI) is a member of PDI family conserved in higher eukaryotes. This protein possesses an N-terminal J domain and C-terminal four thioredoxin domains each having a redox active site motif. Despite the insights obtained at the cellular level on ERdj5, the role of this protein in vivo is still unclear. Here, we present a simple method to purify and identify the disulfide-linked complexes of this protein efficiently from a mouse tissue. By combining acid quenching and thiol-alkylation, we identified a number of potential redox partners of ERdj5 from the mouse epididymis. Further, we show that ERdj5 indeed interacted with two of the identified proteins via formation of intermolecular disulfide bond. Thus, this approach enabled us to detect and identify redox partners of a PDI family member from an animal tissue.  相似文献   
127.
“Nagashima-type” palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major causative mutation of c.796C>T (p.Arg266) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin. On exposure of NPPK lesional skin to water, we observed a whitish spongy change in the SC, suggesting enhanced water permeation into the SC due to overactivation of proteases and a resultant loss of integrity of the SC structure. These findings provide an important framework for developing pathogenesis-based therapies for NPPK.  相似文献   
128.
129.
(?)-6-(7-Methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (KCA-1490) exhibits moderate dual PDE3/4-inhibitory activity and promises as a combined bronchodilatory/anti-inflammatory agent. N-alkylation of the pyridazinone ring markedly enhances potency against PDE4 but suppresses PDE3 inhibition. Addition of a 6-aryl-4,5-dihydropyridazin-3(2H)-one extension to the N-alkyl group facilitates both enhancement of PDE4-inhibitory activity and restoration of potent PDE3 inhibition. Both dihydropyridazinone rings, in the core and extension, can be replaced by achiral 4,4-dimethylpyrazolone subunits and the core pyrazolopyridine by isosteric bicyclic heteroaromatics. In combination, these modifications afford potent dual PDE3/4 inhibitors that suppress histamine-induced bronchoconstriction in vivo and exhibit promising anti-inflammatory activity via intratracheal administration.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号