首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10384篇
  免费   555篇
  国内免费   6篇
  2022年   50篇
  2021年   88篇
  2020年   47篇
  2019年   56篇
  2018年   108篇
  2017年   93篇
  2016年   171篇
  2015年   226篇
  2014年   280篇
  2013年   889篇
  2012年   516篇
  2011年   590篇
  2010年   330篇
  2009年   336篇
  2008年   586篇
  2007年   597篇
  2006年   591篇
  2005年   602篇
  2004年   582篇
  2003年   583篇
  2002年   656篇
  2001年   205篇
  2000年   168篇
  1999年   192篇
  1998年   180篇
  1997年   137篇
  1996年   142篇
  1995年   118篇
  1994年   108篇
  1993年   150篇
  1992年   142篇
  1991年   122篇
  1990年   103篇
  1989年   105篇
  1988年   101篇
  1987年   89篇
  1986年   80篇
  1985年   84篇
  1984年   83篇
  1983年   61篇
  1982年   89篇
  1981年   71篇
  1980年   75篇
  1979年   42篇
  1978年   48篇
  1977年   30篇
  1976年   45篇
  1974年   25篇
  1973年   27篇
  1972年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   
952.

Background

A number of epidemiological studies demonstrated that postprandial hyperglycemia is a risk factor for cardiovascular disease in individuals with impaired glucose tolerance. Although several laboratory studies have addressed the plausible causal role of postprandial acute hyperglycemia (glucose spikes) in the development of atherosclerosis, there is little convincing evidence in vivo whether the atherosclerotic lesion formation can be accelerated solely by glucose spikes. Here, we assessed the effect of repetitive glucose spikes on atherosclerotic lesion formation in mice.

Methods

Female C57BL/6 mice were fed an atherogenic diet from 8 to 28 weeks of age. During the atherogenic diet feeding period, the mice orally received a glucose solution (50 mg glucose/mouse; G group) or water (W group) twice daily, 6 days a week. Atherosclerotic lesion formation in the aortic sinus was quantitatively analyzed in serial cross-sections by oil red O staining.

Results

G group mice showed transient increases in blood glucose level (~5 mmol/L above W group), and the levels returned to levels similar to those in W group mice within 60 min. No significant differences in glucose tolerance, insulin sensitivity, and plasma lipid profiles were observed after the 20-week repetitive administration between the 2 groups. G group mice showed an approximately 4-fold greater atherosclerotic lesion size in the aortic sinus than W group mice. Gene expression levels of Cd68 and Icam1 in the thoracic aorta were higher in G group mice than in W group mice.

Conclusions

These results indicate that glucose spikes can accelerate atherosclerotic lesion formation, with little influence on other metabolic disorders. Repetitive glucose administration in wild-type mice may serve as a simple and useful approach to better understanding the causal role of glycemic spikes in the development of atherosclerosis.  相似文献   
953.
The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.  相似文献   
954.
This study aimed to determine the role of influenza-like illness (ILI) surveillance conducted on Leyte Island, the Philippines, including involvement of other respiratory viruses, from 2010 to 2013. ILI surveillance was conducted from January 2010 to March 2013 with 3 sentinel sites located in Tacloban city, Palo and Tanauan of Leyte Island. ILI was defined as fever ≥38°C or feverish feeling and either cough or running nose in a patient of any age. Influenza virus and other 5 respiratory viruses were searched. A total of 5,550 ILI cases visited the 3 sites and specimens were collected from 2,031 (36.6%) cases. Among the cases sampled, 1,637 (75.6%) were children aged <5 years. 874 (43.0%) cases were positive for at least one of the respiratory viruses tested. Influenza virus and respiratory syncytial virus (RSV) were predominantly detected (both were 25.7%) followed by human rhinovirus (HRV) (17.5%). The age distributions were significantly different between those who were positive for influenza, HRV, and RSV. ILI cases were reported throughout the year and influenza virus was co-detected with those viruses on approximately half of the weeks of study period (RSV in 60.5% and HRV 47.4%). In terms of clinical manifestations, only the rates of headache and sore throat were significantly higher in influenza positive cases than cases positive to other viruses. In conclusion, syndromic ILI surveillance in this area is difficult to detect the start of influenza epidemic without laboratory confirmation which requires huge resources. Age was an important factor that affected positive rates of influenza and other respiratory viruses. Involvement of older age children may be useful to detect influenza more effectively.  相似文献   
955.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   
956.
957.
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.  相似文献   
958.

Purpose

Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance.

Methods and Results

DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling.

Conclusions

A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.  相似文献   
959.
RBM10, originally called S1-1, is a nuclear RNA-binding protein with domains characteristic of RNA processing proteins. It has been reported that RBM10 constitutes spliceosome complexes and that RBM5, a close homologue of RBM10, regulates alternative splicing of apoptosis-related genes, Fas and cFLIP. In this study, we examined whether RBM10 has a regulatory function in splicing similar to RBM5, and determined that it indeed regulates alternative splicing of Fas and Bcl-x genes. RBM10 promotes exon skipping of Fas pre-mRNA as well as selection of an internal 5′-splice site in Bcl-x pre-mRNA. We propose a consensus RBM10-binding sequence at 5′-splice sites of target exons and a mechanistic model of RBM10 action in the alternative splicing.  相似文献   
960.
Dynasore, a specific dynamin GTPase inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. In search for novel dynamin inhibitors that suppress actin dynamics more efficiently, dynasore analogues were screened. N′-[4-(dipropylamino)benzylidene]-2-hydroxybenzohydrazide (DBHA) markedly reduced in vitro actin polymerization, and dose-dependently inhibited phosphatidylserine-stimulated dynamin GTPase activity. DBHA significantly suppressed both the recruitment of dynamin 2 to the leading edge in U2OS cells and ruffle formation in H1299 cells. Furthermore, DBHA suppressed both the migration and invasion of H1299 cells by approximately 70%. Furthermore, intratumoral DBHA delivery significantly repressed tumor growth. DBHA was much less cytotoxic than dynasore. These results strongly suggest that DBHA inhibits dynamin-dependent actin polymerization by altering the interactions between dynamin and lipid membranes. DBHA and its derivative may be potential candidates for potent anti-cancer drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号