首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10526篇
  免费   609篇
  国内免费   6篇
  2022年   54篇
  2021年   92篇
  2020年   58篇
  2019年   59篇
  2018年   125篇
  2017年   95篇
  2016年   169篇
  2015年   244篇
  2014年   306篇
  2013年   907篇
  2012年   518篇
  2011年   611篇
  2010年   350篇
  2009年   310篇
  2008年   568篇
  2007年   579篇
  2006年   595篇
  2005年   612篇
  2004年   570篇
  2003年   569篇
  2002年   627篇
  2001年   202篇
  2000年   167篇
  1999年   174篇
  1998年   166篇
  1997年   126篇
  1996年   128篇
  1995年   113篇
  1994年   107篇
  1993年   145篇
  1992年   142篇
  1991年   115篇
  1990年   102篇
  1989年   122篇
  1988年   101篇
  1987年   100篇
  1986年   91篇
  1985年   84篇
  1984年   86篇
  1983年   77篇
  1982年   101篇
  1981年   78篇
  1980年   73篇
  1979年   62篇
  1978年   52篇
  1977年   53篇
  1976年   45篇
  1974年   36篇
  1973年   42篇
  1972年   34篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
To elucidate mechanisms for tolerating sudden increases in light intensity following canopy gap formation, we investigated susceptibility to photoinhibition in the evergreen clonal plant bamboo, Sasa senanensis, and two deciduous broadleaf woody plants, Quercus mongolica, and Acer mono. We measured pre-dawn photochemical efficiency of photosystem II (F v /F m) in plants exposed to canopy gaps and in shade-grown plants through the month following gap formation. Photoinhibition (indicated by decreased F v /F m) was smallest in S. senanensis and largest in A. mono. S. senanensis had the highest area-based net CO2 assimilation rate (A area) and electron transport rate (ETR) under high light conditions. This species also had the highest leaf mass per area (LMA) and leaf nitrogen content per area (N area). Higher values of LMA and N area under shade conditions probably contribute to circumvent photoinhibition through maintenance of a higher ETR capacity. Q. mongolica, a gap-dependent species, had properties intermediate between S. senanensis and A. mono; it appeared less susceptible to photoinhibition than the shade-tolerant A. mono. None of the species examined had increased photosynthetic capacity 1 month after gap formation, indicating that shade-grown leaves were unable to fully acclimate to increased light.  相似文献   
992.
Acetyl-CoA carboxylases (ACCs), the rate limiting enzymes in de novo lipid synthesis, play important roles in modulating energy metabolism. The inhibition of ACC has demonstrated promising therapeutic potential for treating obesity and type 2 diabetes mellitus in transgenic mice and preclinical animal models. We describe herein the structure-based design and synthesis of a novel series of disubstituted (4-piperidinyl)-piperazine derivatives as ACC inhibitors. Our structure-based approach led to the discovery of the indole derivatives 13i and 13j, which exhibited potent in vitro ACC inhibitory activity.  相似文献   
993.
994.
995.
996.
We examined a role for DNA polymerase β (Pol β) in mammalian long patch base excision repair (LP BER). Although a role for Pol β is well known in single-nucleotide BER, information on this enzyme in the context of LP BER has been limited. To examine the question of Pol β involvement in LP BER, we made use of nucleotide excision repair-deficient human XPA cells expressing UVDE (XPA-UVDE), which introduces a nick directly 5′ to the cyclobutane pyrimidine dimer or 6-4 photoproduct, leaving ends with 3′-OH and 5′-phosphorylated UV lesion. We observed recruitment of GFP-fused Pol β to focal sites of nuclear UV irradiation, consistent with a role of Pol β in repair of UV-induced photoproducts adjacent to a strand break. This was the first evidence of Pol β recruitment in LP BER in vivo. In cell extract, a 5′-blocked oligodeoxynucleotide substrate containing a nicked 5′-cyclobutane pyrimidine dimer was repaired by Pol β-dependent LP BER. We also demonstrated Pol β involvement in LP BER by making use of mouse cells that are double null for XPA and Pol β. These results were extended by experiments with oligodeoxynucleotide substrates and purified human Pol β.  相似文献   
997.
A simple molecular combing method for analysis of biochemical reactions, called the moving droplet method, has been developed. In this method, small droplets containing DNA molecules run down a sloped glass substrate, and this creates a moving interface among the air, droplet, and substrate that stretches the DNA molecules. This method requires a much smaller volume of sample solution than other established combing methods, allowing wider application in various fields. Using this method, λDNA molecules were stretched and absorbed to a glass substrate, and single-molecule analysis of DNA synthesis by DNA polymerases was performed.  相似文献   
998.
γ-Secretase is an enzymatic complex, composed of presenilin 1 (PS1), nicastrin, pen-2, and aph-1, and is responsible for the intramembranous cleavage of various type-I membrane proteins. The level of each component is tightly regulated in a cell via proteasomal degradation. On the other hand, it has previously been reported that PS1/γ-secretase is involved in the activation of phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway. PI3K is inhibited in Alzheimer’s disease (AD) brain, whereas the effects of PI3K inhibition on the metabolism of PS1/γ-secretase have not been elucidated. Here, we demonstrate that the treatment of neurons with PI3K inhibitors leads to increased levels of PS1/γ-secretase components through an inhibitory effect on their degradation. Moreover, PI3K inhibition accelerated ubiquitination of PS1. We further show the evidence that the PS1 ubiquitination after PI3K inhibition is represented by the multiple mono-ubiquitination, instead of poly-ubiquitination. Accordingly, treatment of cells with PI3K inhibitor led to a differential intracellular redistribution of PS1 from the one observed after the proteasomal inhibition. These results suggest that PI3K inhibition may trigger the multiple mono-ubiquitination of PS1, which precludes the degradation of PS1/γ-secretase through the proteasomal pathway. Since PS1/γ-secretase is deeply involved in the production of Aβ protein, a deeper knowledge into its metabolism could contribute to a better elucidation of AD pathogenesis.  相似文献   
999.
Lys48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasomes through its Ile44 hydrophobic patches interactions. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between Lys48 and the C-terminal Gly76 of the preceding units. The conformation of Lys48-linked tetraubiquitin has been shown to change dynamically depending on solution pH. Here we enzymatically synthesized a wild-type Lys48-linked tetraubiquitin for structural study. In the synthesis, cyclic and non-cyclic species were obtained as major and minor fractions, respectively. This enabled us to solve the crystal structure of tetraubiquitin exclusively with native Lys48-linkages at 1.85 Å resolution in low pH 4.6. The crystallographic data clearly showed that the C-terminus of the first ubiquitin is conjugated to the Lys48 residue of the fourth ubiquitin. The overall structure is quite similar to the closed form of engineered tetraubiquitin at near-neutral pH 6.7, previously reported, in which the Ile44 hydrophobic patches face each other. The structure of the second and the third ubiquitin units [Ub(2)-Ub(3)] connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered tetraubiquitins, whereas the structures of Ub(1)-Ub(2) and Ub(3)-Ub(4) isopeptide bonds are almost identical to those of the previously reported structures. From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the pH-dependent closed-to-open conformational transition of tetraubiquitin.  相似文献   
1000.
Claudin-16 is involved in the paracellular reabsorption of Mg2+ in the thick ascending limb of Henle. Little is known about the mechanism regulating the tight junctional localization of claudin-16. Here, we examined the effect of Mg2+ deprivation on the distribution and function of claudin-16 using Madin-Darby canine kidney (MDCK) cells expressing FLAG-tagged claudin-16. Mg2+ deprivation inhibited the localization of claudin-16 at tight junctions, but did not affect the localization of other claudins. Re-addition of Mg2+ induced the tight junctional localization of claudin-16, which was inhibited by U0126, a MEK inhibitor. Transepithelial permeability to Mg2+ was also inhibited by U0126. The phosphorylation of ERK was reduced by Mg2+ deprivation, and recovered by re-addition of Mg2+. These results suggest that the MEK/ERK-dependent phosphorylation of claudin-16 affects the tight junctional localization and function of claudin-16. Mg2+ deprivation decreased the phosphothreonine levels of claudin-16. The phosphothreonine levels of T225A and T233A claudin-16 were decreased in the presence of Mg2+ and these mutants were widely distributed in the plasma membrane. Furthermore, TER and transepithelial Mg2+ permeability were decreased in the mutants. We suggest that the tight junctional localization of claudin-16 requires a physiological Mg2+ concentration and the phosphorylation of threonine residues via a MEK/ERK-dependent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号