首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8531篇
  免费   438篇
  国内免费   6篇
  8975篇
  2022年   43篇
  2021年   75篇
  2020年   43篇
  2019年   47篇
  2018年   91篇
  2017年   82篇
  2016年   145篇
  2015年   195篇
  2014年   244篇
  2013年   827篇
  2012年   426篇
  2011年   517篇
  2010年   293篇
  2009年   278篇
  2008年   498篇
  2007年   508篇
  2006年   522篇
  2005年   523篇
  2004年   493篇
  2003年   475篇
  2002年   554篇
  2001年   106篇
  2000年   87篇
  1999年   111篇
  1998年   143篇
  1997年   110篇
  1996年   104篇
  1995年   96篇
  1994年   89篇
  1993年   123篇
  1992年   105篇
  1991年   70篇
  1990年   64篇
  1989年   73篇
  1988年   60篇
  1987年   55篇
  1986年   47篇
  1985年   53篇
  1984年   63篇
  1983年   40篇
  1982年   77篇
  1981年   56篇
  1980年   59篇
  1979年   29篇
  1978年   39篇
  1977年   26篇
  1976年   34篇
  1974年   23篇
  1973年   25篇
  1972年   21篇
排序方式: 共有8975条查询结果,搜索用时 0 毫秒
991.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   
992.
The calcium-sensing receptor antagonist (CaSR) has been recognized as a promising target of anabolic agents for treating osteoporosis. In the course of developing a new drug candidate for osteoporosis, we found tetrahydropyrazolopyrimidine derivative 1 to be an orally active CaSR antagonist that stimulated transient PTH secretion in rats. However, compound 1 showed poor physical and chemical stability. In order to work out this compound's chemical stability and further understand its in vivo efficacy, we focused on modifying the 2-position of the tetrahydropyrazolopyrimidine. As a result of chemical modification, we discovered (5R)-N-[1-ethyl-1-(4-ethylphenyl)propyl]-2,7,7-trimethyl-5-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide monotosylate 10m (TAK-075), which showed improved solubility, chemical stability, and in vivo efficacy. Furthermore, we describe that evaluating the active metabolite is important during repeated treatment with short-acting CaSR antagonists.  相似文献   
993.

Background  

Recently, some groups have reported on cell-free synthesis of functional membrane proteins (MPs) in the presence of exogenous liposomes (liposomes). Previously, we reported synthesis of a functional AtPPT1 plant phosphate transporter that was associated with liposomes during translation. However, it is unclear whether or not lipid/MP complex formation is common to all types of MPs in the wheat cell-free system.  相似文献   
994.
DISC1 at 10: connecting psychiatric genetics and neuroscience   总被引:1,自引:0,他引:1  
Psychiatric genetics research, as exemplified by the DISC1 gene, aspires to inform on mental health etiology and to suggest improved strategies for intervention. DISC1 was discovered in 2000 through the molecular cloning of a chromosomal translocation that segregated with a spectrum of major mental illnesses in a single large Scottish family. Through in vitro experiments and mouse models, DISC1 has been firmly established as a genetic risk factor for a spectrum of psychiatric illness. As a consequence of its protein scaffold function, the DISC1 protein impacts on many aspects of brain function, including neurosignaling and neurodevelopment. DISC1 is a pathfinder for understanding psychopathology, brain development, signaling and circuitry. Although much remains to be learnt and understood, potential targets for drug development are starting to emerge, and in this review, we will discuss the 10 years of research that has helped us understand key roles of DISC1 in psychiatric disease.  相似文献   
995.

Introduction  

Binding immunoglobulin protein (BiP) has previously shown powerful anti-inflammatory properties in the collagen-induced arthritis (CIA) model, where a single dose of BiP has proved to be both a long-term prophylactic and therapeutic. In both CIA and human in vitro studies, BiP induced regulatory T cells. The present investigation looked at the anti-inflammatory effect of BiP on inflamed human synovial tissue transplanted into severe combined immunodeficient mice (SCID), a chimaeric in vivo model previously used to test the efficacy of biologic therapies.  相似文献   
996.
Metal-mediated base pairs formed by the interaction between metal ions and artificial bases in oligonucleotides have been developed for potential applications in nanotechnology. We recently found that a natural C:C mismatched base pair bound to an Ag(+) ion to generate a novel metal-mediated base pair in duplex DNA. Preparation of the novel C-Ag-C base pair involving natural bases is more convenient than that of metal-mediated base pairs involving artificial bases because time-consuming base synthesis is not required. Here, we examined the thermodynamic properties of the binding between the Ag(+) ion and each of single and double C:C mismatched base pair in duplex DNA by isothermal titration calorimetry. The Ag(+) ion specifically bound to the C:C mismatched base pair at a 1:1 molar ratio with 10(6) M(-1) binding constant, which was significantly larger than those for nonspecific metal ion-DNA interactions. The specific binding between the Ag(+) ion and the single C:C mismatched base pair was mainly driven by the positive dehydration entropy change and the negative binding enthalpy change. In the interaction between the Ag(+) ion and each of the consecutive and interrupted double C:C mismatched base pairs, stoichiometric binding at a 1:1 molar ratio was achieved in each step of the first and second Ag(+) binding. The binding affinity for the second Ag(+) binding was similar to that for the first Ag(+) binding. Stoichiometric binding without interference and negative cooperativity may be favorable for aligning multiple Ag(+) ions in duplex DNA for applications of the metal-mediated base pairs in nanotechnology.  相似文献   
997.
Three holocelluloses (i.e., cellulose and hemicellulose fractions) are prepared from softwood and hardwood by the Wise method. These holocelluloses completely dissolve in 8% lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) after an ethylenediamine (EDA) pretreatment. After diluting the holocellulose solutions to 1% LiCl/DMI, they are subjected to size-exclusion chromatography/multiangle laser-light scattering/photodiode array (SEC-MALLS-PDA) analysis. All holocelluloses exhibit bimodal molecular weight distributions primarily due to high-molecular-weight (HMW) cellulose and low-molecular-weight hemicellulose fractions. Plots of molecular weight vs root-mean-square radius obtained by SEC-MALLS analysis revealed that all the wood celluloses comprise dense conformations in 1% LiCl/DMI. In contrast, bacterial cellulose, which was used as a pure cellulose model, has a random coil conformation as a linear polymer. These results show that both softwood and hardwood HMW celluloses contain branched structures, which are probably present on crystalline cellulose microfibril surfaces. These results are consistent with those obtained by permethylation analysis of wood celluloses.  相似文献   
998.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   
999.
Dynamic viscoelasticity measurements were performed for aqueous dispersions of cellulose nanofibers prepared by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and subsequent mechanical disintegration in water. The frequency dependence of the storage and loss moduli of 0.02% (w/v) dispersions of TEMPO-oxidized cellulose nanofibers in water showed terminal relaxation behavior at relatively lower angular frequencies. This strongly suggests that each cellulose nanofiber in the dispersion behaves as a semiflexible rod-like macromolecular chain or colloidal particle. Furthermore, a clear boundary was observed between the terminal relaxation and rubbery plateau regions. The longest viscoelastic relaxation time, τ, was estimated from the angular frequency, corresponding to the boundary point, and the average length of the cellulose nanofibers, L, was estimated using the equation τ = πη(s)L(3)/[18k(B)T ln(L/d)]. The equation gave a value of L = 2.2 μm, which was in good agreement with TEM observations.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号