首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2741篇
  免费   155篇
  国内免费   3篇
  2021年   18篇
  2020年   9篇
  2019年   26篇
  2018年   19篇
  2017年   27篇
  2016年   44篇
  2015年   48篇
  2014年   76篇
  2013年   226篇
  2012年   124篇
  2011年   121篇
  2010年   84篇
  2009年   104篇
  2008年   162篇
  2007年   148篇
  2006年   154篇
  2005年   140篇
  2004年   159篇
  2003年   164篇
  2002年   169篇
  2001年   58篇
  2000年   47篇
  1999年   59篇
  1998年   57篇
  1997年   47篇
  1996年   30篇
  1995年   54篇
  1994年   37篇
  1993年   44篇
  1992年   34篇
  1991年   43篇
  1990年   29篇
  1989年   27篇
  1988年   26篇
  1987年   22篇
  1986年   23篇
  1985年   22篇
  1984年   24篇
  1983年   19篇
  1982年   19篇
  1981年   17篇
  1980年   12篇
  1979年   9篇
  1978年   8篇
  1977年   16篇
  1976年   19篇
  1975年   12篇
  1974年   11篇
  1973年   9篇
  1972年   9篇
排序方式: 共有2899条查询结果,搜索用时 31 毫秒
121.
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates.  相似文献   
122.
Because tuberculosis is one of the most prevalent and serious infections, countermeasures against it are urgently required. We isolated the antitubercular agents caprazamycins from the culture of an actinomycete strain and created CPZEN-45 as the most promising derivative of the caprazamycins. Herein, we describe the mode of action of CPZEN-45 first against Bacillus subtilis. Unlike the caprazamycins, CPZEN-45 strongly inhibited incorporation of radiolabeled glycerol into growing cultures and showed antibacterial activity against caprazamycin-resistant strains, including a strain overexpressing translocase-I (MraY, involved in the biosynthesis of peptidoglycan), the target of the caprazamycins. By contrast, CPZEN-45 was not effective against a strain overexpressing undecaprenyl-phosphate–GlcNAc-1-phosphate transferase (TagO, involved in the biosynthesis of teichoic acid), and a mutation was found in the tagO gene of the spontaneous CPZEN-45-resistant strain. This suggested that the primary target of CPZEN-45 in B. subtilis is TagO, which is a different target from that of the parent caprazamycins. This suggestion was confirmed by evaluation of the activities of these enzymes. Finally, we showed that CPZEN-45 was effective against WecA (Rv1302, also called Rfe) of Mycobacterium tuberculosis, the ortholog of TagO and involved in the biosynthesis of the mycolylarabinogalactan of the cell wall of M. tuberculosis. The outlook for WecA as a promising target for the development of antituberculous drugs as a countermeasure of drug resistant tuberculosis is discussed.  相似文献   
123.
Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.  相似文献   
124.
Here we attempted to clarify telomere metabolism in parental cells and their derived clonal human induced pluripotent stem cells (iPSCs) at different passages using quantitative fluorescence in situ hybridization (Q-FISH). Our methodology involved estimation of the individual telomere lengths of chromosomal arms in individual cells within each clone in relation to telomere fluorescence units (TFUs) determined by Q-FISH. TFUs were very variable within the same metaphase spread and within the same cell. TFUs of the established iPSCs derived from human amnion (hAM933 iPSCs), expressed as mean values of the median TFUs of 20 karyotypes, were significantly longer than those of the parental cells, although the telomere extension rates varied quite significantly among the clones. Twenty metaphase spreads from hAM933 iPSCs demonstrated no chromosomal instability. The iPSCs established from fetal lung fibroblasts (MRC-5) did not exhibit telomere shortening and chromosomal instability as the number of passages increased. However, the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased, and one (5%) of 20 metaphase spreads showed chromosomal abnormalities including X trisomy at an early stage and all 20 showed abnormalities including X and 12 trisomies at the late stage.  相似文献   
125.
ERdj5 (also known as JPDI) is a member of PDI family conserved in higher eukaryotes. This protein possesses an N-terminal J domain and C-terminal four thioredoxin domains each having a redox active site motif. Despite the insights obtained at the cellular level on ERdj5, the role of this protein in vivo is still unclear. Here, we present a simple method to purify and identify the disulfide-linked complexes of this protein efficiently from a mouse tissue. By combining acid quenching and thiol-alkylation, we identified a number of potential redox partners of ERdj5 from the mouse epididymis. Further, we show that ERdj5 indeed interacted with two of the identified proteins via formation of intermolecular disulfide bond. Thus, this approach enabled us to detect and identify redox partners of a PDI family member from an animal tissue.  相似文献   
126.
Exercise enhances insulin sensitivity in skeletal muscle, but the underlying mechanism remains obscure. Recent data suggest that alternatively activated M2 macrophages enhance insulin sensitivity in insulin target organs such as adipose tissue and liver. Therefore, the aim of this study was to determine the role of anti-inflammatory M2 macrophages in exercise-induced enhancement of insulin sensitivity in skeletal muscle. C57BL6J mice underwent a single bout of treadmill running (20 m/min, 90 min). Twenty-four hours later, ex vivo insulin-stimulated 2-deoxy glucose uptake was found to be increased in plantaris muscle. This change was associated with increased number of CD163-expressing macrophages (i.e. M2-polarized macrophages) in skeletal muscle. Systemic depletion of macrophages by pretreatment of mice with clodronate-containing liposome abrogated both CD163-positive macrophage accumulation in skeletal muscle as well as the enhancement of insulin sensitivity after exercise, without affecting insulin-induced phosphorylation of Akt and AS160 or exercise-induced GLUT4 expression. These results suggest that accumulation of M2-polarized macrophages is involved in exercise-induced enhancement of insulin sensitivity in mouse skeletal muscle, independently of the phosphorylation of Akt and AS160 and expression of GLUT4.  相似文献   
127.
The attractive and characteristically sweet aroma components of baelfruit—a tropical fruit— were investigated. The aroma concentrates possessing the sweet floral and somewhat terpene-like aroma were obtained from both the pulp and peel of fresh baelfruits by means of lyophilization and ether extraction, being analyzed mainly by GC-MS, A total of 39 components were identified. Among these components, terpene alcohols and β-βonone were considered to contribute to the aroma of baelfruit. At optimum ripeness, the fruit with excellent flavor contained a large quantity of an isomeric compound of 3,7-dimethyl-1,5,7-octatrien-3-ol. This compound couldn’t be found in unripe fruit, and seems to be ?mportant in making the baelfruit flavor attractive.  相似文献   
128.
The effects of detergents on the lysozyme-catalyzed hydrolysis of Micrococcus lysodeikticus cells were investigated by changing the concentration of Na-phosphate buffer and pH in the presence or absence of sucrose. Also, a parallel study of the hydrolysis of glycolchitin by lysozyme was conducted and compared to the lytic reaction. Electron microscopy was utilized to follow the changes in cell morphology during the various treatments.

None of the detergents changed turbidity of the cell suspension. However, they did affect the change in turbidity during lysis in unique ways. SDS, which is an anionic detergent, inhibited lysozyme activity and its addition to the reaction mixture caused a rapid and large decrease in the turbidity. Brij 35 and Triton X-100, which are non-ionic detergents, did not inhibit lysozyme activity, but their presence in the reaction mixture changed the rate of turbidity change. Apparently non-ionic detergents disrupt only the protoplast, while anionic detergents disrupt both the protoplast and the damaged cell. The lytic mechanism of M. lysodeikticus by lysozyme was discussed in detail.  相似文献   
129.
1-O-Palmitoyl-d-glucopyranose was prepared by the selective 1-O-acylation of 4,6-O-benzylideneglucose followed by hydrogenolysis of the protecting group. 1-O-Oleoyl-d-glucopyranose was synthesized from the corresponding benzylidene derivative by selective hydrolysis in acetic acid. This procedure constitutes a useful method for the synthesis of 1-O-acyl-d-glucopyranoses containing unsaturated carboxylic acids. However, 4,6-O-benzylidene-l-O-linolenoyl-d-glucopyranose was converted to 3-O-linolenoyl-d-glucopyranose by the acidic hydrolysis due to acyl migration.

Synthesized glucosyl esters were inactive in the bean second-internode bioassay. However, it was found that 3-O-linolenoyl-d-glucopyranose had a promoting activity on germination of pollen and growth of pollen tube.  相似文献   
130.
Three fungal trichothecenes, verrucarin A, roridin A and 8-β-hydroxyroridin E, were isolated as callus-initiating promoters from Myrothecium sp. 301. These trichothecenes promoted callus induction, synergistically coupled with a low concentration of 2,4-dichlorophenoxyacetic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号