首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2874篇
  免费   153篇
  国内免费   3篇
  3030篇
  2021年   17篇
  2019年   25篇
  2018年   22篇
  2017年   36篇
  2016年   47篇
  2015年   62篇
  2014年   80篇
  2013年   244篇
  2012年   131篇
  2011年   139篇
  2010年   93篇
  2009年   100篇
  2008年   171篇
  2007年   165篇
  2006年   155篇
  2005年   159篇
  2004年   173篇
  2003年   159篇
  2002年   167篇
  2001年   45篇
  2000年   46篇
  1999年   48篇
  1998年   46篇
  1997年   34篇
  1996年   31篇
  1995年   48篇
  1994年   35篇
  1993年   42篇
  1992年   29篇
  1991年   35篇
  1990年   27篇
  1989年   30篇
  1988年   32篇
  1987年   23篇
  1986年   26篇
  1985年   18篇
  1984年   31篇
  1983年   21篇
  1982年   24篇
  1981年   25篇
  1980年   14篇
  1979年   14篇
  1977年   14篇
  1976年   20篇
  1975年   15篇
  1974年   10篇
  1973年   9篇
  1972年   12篇
  1971年   10篇
  1970年   12篇
排序方式: 共有3030条查询结果,搜索用时 9 毫秒
81.
The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains carrying a temperature-sensitive allele of KOG1 (kog1-105) encoding an essential component of TORC1, as well as yeast cell treated with rapamycin show mitotic delay with prolonged G2. Overexpression of Cdc5, the yeast polo-like kinase, rescues the growth defect of kog1-105, and in turn, Cdc5 activity is attenuated in kog1-105 cells. The TORC1-Type2A phosphatase pathway mediates nucleocytoplasmic transport of Cdc5, which is prerequisite for its proper localization and function. The C-terminal polo-box domain of Cdc5 has an inhibitory role in nuclear translocation. Taken together, our results indicate a novel function of Tor in the regulation of cell cycle and proliferation.  相似文献   
82.
Hirai S  Kim YI  Goto T  Kang MS  Yoshimura M  Obata A  Yu R  Kawada T 《Life sciences》2007,81(16):1272-1279
Obese adipose tissue is characterized by an enhanced infiltration of macrophages. It is considered that the paracrine loop involving monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha between adipocytes and macrophages establishes a vicious cycle that augments the inflammatory changes and insulin resistance in obese adipose tissue. Polyphenols, which are widely distributed in fruit and vegetables, can act as antioxidants and some of them are also reported to have anti-inflammatory properties. Tomato is one of the most popular and extensively consumed vegetable crops worldwide, which also contains many flavonoids, mainly naringenin chalcone. We investigated the effect of flavonoids, including naringenin chalcone, on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages and in the interaction between adipocytes and macrophages. Naringenin chalcone inhibited the production of TNF-alpha, MCP-1, and nitric oxide (NO) by LPS-stimulated RAW 264 macrophages in a dose-dependent manner. Coculture of 3T3-L1 adipocytes and RAW 264 macrophages markedly enhanced the production of TNF-alpha, MCP-1, and NO compared with the control cultures; however, treatment with naringenin chalcone dose-dependently inhibited the production of these proinflammatory mediators. These results indicate that naringenin chalcone exhibits anti-inflammatory properties by inhibiting the production of proinflammatory cytokines in the interaction between adipocytes and macrophages. Naringenin chalcone may be useful for ameliorating the inflammatory changes in obese adipose tissue.  相似文献   
83.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), one of the tryptophan pyrolysates, is a dietary carcinogen and is formed in cooked meat and fish in our daily diet. Trp-P-1 will affect the cells in the blood circulation system before it causes carcinogenicity in target organs such as the liver. In this study, the cytotoxicity of Trp-P-1 was investigated in mononuclear cells (MNCs) from blood. Trp-P-1 (10-15 microM) decreased cell viability and induced apoptosis characterized both by morphological changes and by DNA fragmentation 4 h after treatment. DNA fragmentation was also observed following treatment at 1 nM after 24 h in culture. This result suggested that apoptosis would occur in the body following unexpected intake of foods containing Trp-P-1. To determine the mechanism of apoptosis, we investigated the activation of the caspase cascade in MNCs. Trp-P-1 (10-15 microM) activated the caspase cascade, i.e. the activity of caspase-3, -6, -7, -8 and -9 increased dose-dependently using peptide substrates, the active forms of caspase-3, -8 and -9 were detected by immunoblotting, and cleavage of poly(ADP-ribose) polymerase and protein kinase C-delta as the intracellular substrates for caspases was observed. A peptide inhibitor of caspase-8 completely suppressed activation of all other caspases, while an inhibitor of caspase-9 did not. These results indicated that caspase-8 may act as an apical caspase in the Trp-P-1-activated cascade.  相似文献   
84.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   
85.
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.  相似文献   
86.
Dietary products of lipid peroxidation cause hepatic dysfunction due to decreases in the activities of some hepatic enzymes and to depletion of CoA. An idea about the decreases and depletion is that the enzymes and CoA could be injured directly by the incorporated products in the liver. Their inactivations in vitro were then examined using a reasonable amount of peroxidation products. The hepatic cytosol, microsomes, and mitochondria were incubated with 10, 15, and 20 micrograms/mg protein of peroxidation products, respectively, and changes in the enzymatic activities were monitored. Glucose-6-phosphate dehydrogenase, mitochondrial NAD-dependent aldehyde dehydrogenase, glucokinase, and glyceradehyde phosphate dehydrogenase were inactivated, and the CoA level was decreased, but the other hepatic enzymes were not. Although glyceraldehyde phosphate dehydrogenase was most sensitive to peroxidation products in vitro, the decrease in activity was not detected by the oral dose of secondary products. On the other hand, among the components of peroxidation products, hydroperoxides and polymers are not incorporated in the liver, but decomposed products of low molecular weight are incorporated. Glucokinase among the above enzymes was not inactivated by the low-molecular-weight products. It was therefore concluded that glucose-6-phosphate dehydrogenase, mitochondrial NAD-dependent aldehyde dehydrogenase, and CoA were targets of the direct attack by incorporated components of peroxidation products in the liver.  相似文献   
87.
88.
Many decapod crustaceans in marine intertidal habitats release larvae toward coastal oceans, from which postlarvae (decapodids: settling-stage larvae) return home. Decapodid settlement processes are poorly understood. Previous studies showed that in Kyushu, Japan, the callianassid shrimp population on an intertidal sandflat of an open bay joining the coastal ocean near a large estuary released eight batches of larvae basically in a semilunar cycle from June through October and that decapodids performed diel vertical migration, occurring in the water column nocturnally. We conducted (a) frequent sampling for population density and size-composition on the sandflat through one reproductive season, (b) planktonic and benthic sampling for decapodids around the bay mouth, and (c) current meter deployment at three points across the bay mouth for tidal harmonic analysis. On the sandflat, six batches of newly-settled decapodids (settlers) occurred in a semilunar periodicity until October, with peaks occurring 0–3 days before syzygy dates except for the first one. For larval Batches 1–4, buoyancy-driven shoreward subsurface currents during July to mid-October would transport some pre-decapodid-stage larvae (zoeae) toward the bay. The absence of expected settler Batches 7–8 would be due to the converse subsurface currents caused by water-column mixing and seasonal winds after mid-October, carrying zoeae offshore. Once in the bay, phasing of night and nighttime-averaged shoreward tidal current explained the settlement pattern for Batches 1–4. For Batches 5–6 occurring in mid-September to mid-October, water currents generated by seasonal wind and tidal forcings may have caused peak settlement after the time expected from tidally-driven decapodid transport.  相似文献   
89.
Plum pox virus (PPV) is one of the most important plant viruses causing serious economic losses. Thus far, strain typing based on the definition of 10 monophyletic strains with partially differentiable biological properties has been the sole approach used for epidemiological characterization of PPV. However, elucidating the genetic determinants underlying intra-strain biological variation among populations or isolates remains a relevant but unexamined aspect of the epidemiology of the virus. In this study, based on complete nucleotide sequence information of 210 Japanese and 47 non-Japanese isolates of the PPV-Dideron (D) strain, we identified five positively selected sites in the PPV-D genome. Among them, molecular studies showed that amino acid substitutions at position 2,635 in viral replicase correlate with viral titre and competitiveness at the systemic level, suggesting that amino acid position 2,635 is involved in aphid transmission efficiency and symptom severity. Estimation of ancestral genome sequences indicated that substitutions at amino acid position 2,635 were reversible and peculiar to one of two genetically distinct PPV-D populations in Japan. The reversible amino acid evolution probably contributes to the dissemination of the virus population. This study provides the first genomic insight into the evolutionary epidemiology of PPV based on intra-strain biological variation ascribed to positive selection.  相似文献   
90.
Puromycin aminonucleoside (PAN) has been known to induce proteinuria. The increased generation of reactive oxygen species (ROS) has been implicated in this toxicity of PAN. We have reported that PAN increases the synthesis of methylguanidine (MG) and creatol which are the products of the reaction of creatinine and the hydroxyl radical in isolated rat hepatocytes. However, the mechanism for the increased ROS induced by PAN is still unclear. In this paper, we investigate the role of protein kinase C (PKC) on the PAN induced reactive oxygen generation in isolated rat hepatocytes. Isolated hepatocytes were incubated in Krebs-Henseleit bicarbonate buffer containing 3% BSA, 16.6 mM creatinine and tested reagents. MG and creatol were determined by high-performance liquid chromatography using 9,10-phenanthrenequinone for the post-labeling. PAN increased MG and creatol synthesis in isolated rat hepatocytes by 60%. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, at 10 and 100 μM significantly inhibited MG and creatol synthesis with or without PAN. The inhibition rate is dose dependent from 10 to 100 μM. H1004, a reagent used as control for H-7, did not affect (at 10 μM) or increased little (at 100 μM) the synthesis of MG and creatol. Ro31-8425, a potent PKC inhibitor, significantly inhibited (at 10 μM) MG synthesis in the presence of PAN. PKC in the membrane fraction, a marker of PKC activation, increased over the initial concentration by a factor of 1.65-fold at 60 min incubation and 2.16-fold at 120 min with PAN, while it changed little without PAN. These results indicate that PAN activates PKC resulting in increased hydroxyl radical generation in isolated rat hepatocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号