首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   986篇
  免费   59篇
  国内免费   1篇
  2023年   4篇
  2022年   9篇
  2021年   9篇
  2020年   6篇
  2019年   13篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   28篇
  2014年   47篇
  2013年   108篇
  2012年   65篇
  2011年   57篇
  2010年   39篇
  2009年   43篇
  2008年   64篇
  2007年   61篇
  2006年   53篇
  2005年   67篇
  2004年   64篇
  2003年   55篇
  2002年   43篇
  2001年   6篇
  2000年   12篇
  1999年   11篇
  1998年   14篇
  1997年   11篇
  1996年   3篇
  1995年   12篇
  1994年   9篇
  1993年   10篇
  1992年   15篇
  1991年   6篇
  1990年   10篇
  1989年   3篇
  1988年   4篇
  1987年   10篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有1046条查询结果,搜索用时 170 毫秒
101.
Cyclin-dependent kinase 5 (Cdk5) is emerging as a neuronal protein kinase involved in multiple aspects of neurotransmission in both post- and presynaptic compartments. Within the reward/motor circuitry of the basal ganglia, Cdk5 regulates dopamine neurotransmission via phosphorylation of the postsynaptic signal transduction pathway integrator, DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, M(r) 32,000). Cdk5 has also been implicated in regulating various steps in the presynaptic vesicle cycle. Here we report that Cdk5 phosphorylates tyrosine hydroxylase (TH), the key enzyme for synthesis of dopamine. Using phosphopeptide mapping, site-directed mutagenesis, and phosphorylation state-specific antibodies, the site was identified as Ser31, a previously defined extracellular signal-regulated kinases 1/2 (ERK1/2) site. The phosphorylation of Ser31 by Cdk5 versus ERK1/2 was investigated in intact mouse striatal tissue using a pharmacological approach. The results indicated that Cdk5 phosphorylates TH directly and also regulates ERK1/2-dependent phosphorylation of TH through the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1). Finally, phospho-Ser31 TH levels were increased in dopaminergic neurons of rats trained to chronically self-administer cocaine. These results demonstrate direct and indirect regulation of the phosphorylation state of a Cdk5/ERK1/2 site on TH and suggest a role for these pathways in the neuroadaptive changes associated with chronic cocaine exposure.  相似文献   
102.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   
103.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   
104.
Takai A  Kagawa N  Fujikawa K 《Mutation research》2004,558(1-2):131-136
The frequency of micronucleated cells (MNCs) was measured in acridine-orange (AO) stained RNA-rich gill cells from male and female medaka (Oryzias latipes) fish of known body weight. Spontaneous MNC frequencies were not significantly correlated with body weight, despite the fact that the heaviest of the 30 fish used outweighed the lightest by a factor of 3. Average MNC frequencies were identical in males and females at 0.8 per thousand. An X-ray dose of 4 Gy increased the frequency of MNCs over the spontaneous level in all 30 of the fish used, reaching a level of 7.2 per thousand on average when assayed 24 h after exposure. In X-ray treated fish, MNC frequency and body weight were not significantly correlated, nor was there any difference between the sexes. These and other results support our primary conclusion that AO-staining is suitable for the medaka micronucleus assay in gill cells, and indicate that male and female medaka fish are similarly and size-independently susceptible to both spontaneous and X-ray induced micronucleus formation in gill cells.  相似文献   
105.
Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms.  相似文献   
106.
Phosphorylation of myosin regulatory light chain (MLC) plays a regulatory role in muscle contraction, and the level of MLC phosphorylation is balanced by MLC kinase and MLC phosphatase (MLCP). MLCP consists of a catalytic subunit, a large subunit (MYPT1 or MYPT2), and a small subunit. MLCP activity is regulated by phosphorylation of MYPTs, whereas the role of small subunit in the regulation remains unknown. We previously characterized a human heart-specific small subunit (hHS-M21) that increased the sensitivity to Ca2+ in muscle contraction. In this study, we investigated the role of hHS-M21 in the regulation of MLCP phosphorylation. Two isoforms of hHS-M21, hHS-M21A and hHS-M21B, preferentially bound the C-terminal one-third region of MYPT1 and MYPT2, respectively. Amino acid substitutions at a phosphorylation site of MYPT1, Ser-852, impaired the binding of MYPT1 and hHS-M21. The hHS-M21 increased the phosphorylation level of MYPT1 at Thr-696, which was attenuated by Rho-associated kinase (ROCK) inhibitors and small interfering RNAs for ROCK. In addition, hHS-M21 bound ROCK and enhanced the ROCK activity. These findings suggest that hHS-M21 is a heart-specific effector of ROCK and plays a regulatory role in the MYPT1 phosphorylation at Thr-696 by ROCK.  相似文献   
107.
108.
Pseudomonas cichorii is the major causal agent of bacterial rot of lettuce. Collapse and browning symptoms were observed in lettuce leaf tissue from 15 to 24 h after inoculation (HAI) with P. cichorii; superoxide anion generation was detected at 1 to 6 HAI; and cell death was induced at 6 HAI, reaching a maximum at approximately 9 and 12 HAI. Heterochromatin condensation and DNA laddering also were observed within 3 HAI. Pharmacological studies showed that induction of cell death and DNA laddering was closely associated with de novo protein synthesis, protein kinase, intracellular reactive oxygen species, DNase, serine protease, and caspase III-like protease. Moreover, chemicals, which inhibited the induction of cell death and DNA laddering, also suppressed the development of disease symptoms. These results suggest that apoptotic cell death might be closely associated with the development of bacterial rot caused by P. cichorii.  相似文献   
109.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号