首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   71篇
  国内免费   1篇
  2023年   5篇
  2022年   13篇
  2021年   11篇
  2020年   7篇
  2019年   18篇
  2018年   21篇
  2017年   13篇
  2016年   21篇
  2015年   33篇
  2014年   49篇
  2013年   139篇
  2012年   82篇
  2011年   86篇
  2010年   50篇
  2009年   54篇
  2008年   83篇
  2007年   84篇
  2006年   75篇
  2005年   85篇
  2004年   95篇
  2003年   76篇
  2002年   55篇
  2001年   28篇
  2000年   19篇
  1999年   19篇
  1998年   18篇
  1997年   13篇
  1996年   12篇
  1995年   16篇
  1994年   9篇
  1993年   13篇
  1992年   21篇
  1991年   12篇
  1990年   17篇
  1989年   10篇
  1988年   11篇
  1987年   13篇
  1986年   8篇
  1985年   3篇
  1984年   6篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1968年   1篇
排序方式: 共有1444条查询结果,搜索用时 31 毫秒
101.
We induced acute skeletal muscle necrosis in rats using bupivacaine hydrochloride and found that both 2,5- and 2,3-dihydroxybenzoic acid significantly increased in skeletal muscle. A single administration of dimethyl sulphoxide, a free radical scavenger, significantly lowered concentrations of 2,5- and 2,3-dihydroxybenzoic acid. These results suggest that dimethyl sulphoxide is an effective hydroxyl radical scavenger and may be useful in the treatment of myopathy.  相似文献   
102.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   
103.
Conjugative transfer of the Enterococcus faecalis plasmid pPD1 is activated by cPD1, one of several peptide sex pheromones secreted by plasmid-free recipient cells, and is blocked by a donor-produced peptide inhibitor, iPD1. Using a tritiated pheromone, [3H]cPD1, we investigated how pPD1-harboring donor cells receive these peptide signals. Donor cells rapidly incorporated [3H]cPD1. The cell extract but not the membrane fraction of the donor strain exhibited significant [3H]cPD1-binding activity. On the basis of these data and those of tracer studies, it was demonstrated that cPD1 was internalized, where it bound to a high-molecular-weight compound. The cell extract of a strain carrying the traA-bearing multicopy plasmid (pDLHH21) also exhibited high [3H]cPD1-binding activity. A recombinant TraA exhibited a dissociation constant of 0.49 ± 0.08 nM against [3H]cPD1. iPD1 competitively inhibited [3H]cPD1 binding to TraA, whereas pheromones and inhibitors relating to other plasmid systems did not. These results show that TraA is a specific intracellular receptor for cPD1 and that iPD1 acts as an antagonist for TraA. A strain carrying the traC-bearing multicopy plasmid (pDLES23) exhibited significant [3H]cPD1-binding activity. A strain carrying traC-disrupted pPD1 (pAM351CM) exhibited lower [3H]cPD1-binding activity as well as lower sensitivity to cPD1 than a wild-type donor strain. Some of the other pheromones and inhibitors inhibited [3H]cPD1 binding to the traC transformant like cPD1 and iPD1 did. These results show that TraC, as an extracellular less-specific pheromone-binding protein, supports donor cells to receive cPD1.  相似文献   
104.
Mouse neural precursor cells (NPC) were dissociated from fetal heads at the 10th day of gestation. When clumps of NPC were cultured in collagen gel, they grew and reorganized neural tube-like structures in medium containing fetal calf serum at 10% and supplemented with insulin, transferrin, cholera toxin and selenite. However, dissociated NPC died when they were cultured in collagen gel at low density in the same medium. Addition of fibroblast growth factor-2 (FGF-2) to this culture stimulated growth of NPC and formation of neural tube-like structures. The requirement for FGF-2 disappeared in high seeding density culture: they grew and formed neural tube-like structures without FGF-2. The structures formed in collagen gel were immunohistochemically positive against anti-FGF-2 antibody. The results show that the three-dimensional culture system provides a useful tool to study the roles of FGF-2 in morphogenesis of the central nervous system.  相似文献   
105.
A β-glucan produced by Aureobasidium pullulans (AP-PG) is consisting of a β-(1,3)-linked main chain with β-(1,6)-linked glucose side residues. Various β-glucans consisting of β-(1,3)-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells.  相似文献   
106.
Directed evolution of squalene synthase for dehydrosqualene biosynthesis   总被引:1,自引:0,他引:1  
Squalene synthase (SQS) catalyzes the first step of sterol/hopanoid biosynthesis in various organisms. It has been long recognized that SQSs share a common ancestor with carotenoid synthases, but it is not known how these enzymes selectively produce their own product. In this study, SQSs from yeast, human, and bacteria were independently subjected to directed evolution for the production of the C30 carotenoid backbone, dehydrosqualene. This was accomplished via high-throughput screening with Pantoea ananatis phytoene desaturase, which can selectively convert dehydrosqualene into yellow carotenoid pigments. Genetic analysis of the resultant mutants revealed various mutations that could effectively convert SQS into a “dehydrosqualene synthase.” All of these mutations are clustered around the residues that have been proposed to be important for NADPH binding.  相似文献   
107.
The senescence-accelerated mouse prone10 (SAMP10) strain, a model of aging, exhibits cognitive impairments and cerebral atrophy. We noticed that SAMP10/TaSlc mice, a SAMP10 substrain, have developed persistent glucosuria over the past few years. In the present study, we characterized SAMP10/TaSlc mice and further identified a spontaneous mutation in the Slc5a2 gene encoding sodium-glucose co-transporter (SGLT) 2. The mean concentration of urine glucose was high in SAMP10/TaSlc mice and increased further with advancing age, whereas other strains of senescence-accelerated mice, including SAMP1/SkuSlc, SAMP6/TaSlc and SAMP8/TaSlc or normal aging control SAMR1/TaSlc mice, exhibited no detectable glucose in urine. SAMP10/TaSlc mice consumed increasing amounts of food and water compared to SAMR1/TaSlc mice, suggesting the compensation of polyuria and the loss of glucose. Oral glucose tolerance tests showed decreased glucose reabsorption in the kidney of SAMP10/TaSlc mice. In addition, blood glucose levels decreased in an age-dependent fashion. The kidney was innately larger than that of control mice with no histological alterations. We examined the expression levels of glucose transporters in the kidney. Among SGLT1, SGLT2, glucose transporter (GLUT) 1 and GLUT2, we found a significant decrease only in the level of SGLT2. DNA sequencing of SGLT2 in SAMP10/TaSlc mice revealed a single nucleotide deletion of guanine at 1236, which resulted in a frameshift mutation that produced a truncated protein. We designate this strain as SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2). Recently, SGLT2 inhibitors have been demonstrated to be effective for the treatment of patients with type 2 diabetes (T2D). SAMP10-ΔSglt2 mice may serve as a unique preclinical model to study the link between aging-related neurodegenerative disorders and T2D.  相似文献   
108.
Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives.  相似文献   
109.
We aimed to study kinetics of modulation by intracellular Mg2+ of cardiac gap junction (Mg2+ gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg2+. In order to rapidly apply Mg2+ to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (Gj) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased Gj, followed by slow Gj change with time constant of 3.5 s at 10 mM Mg2+. Mg2+ more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg2+ (0.6 mM) increased Gj with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of Gj changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg2+ concentration was almost linear. Based on the experimental data, a mathematical model of Mg2+ gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg2+ gate model suggested a pivotal role of the Mg2+ gate of gap junction under pathological conditions.  相似文献   
110.
Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号