首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   11篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   13篇
  2013年   19篇
  2012年   23篇
  2011年   26篇
  2010年   13篇
  2009年   20篇
  2008年   19篇
  2007年   14篇
  2006年   17篇
  2005年   14篇
  2004年   16篇
  2003年   16篇
  2002年   21篇
  2001年   4篇
  2000年   8篇
  1999年   11篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有338条查询结果,搜索用时 265 毫秒
81.
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.  相似文献   
82.
Leukocyte mono-Ig-like receptor 5 (LMIR5, also called CD300b) is an activating receptor expressed in myeloid cells. We have previously demonstrated that T cell Ig mucin 1 works as a ligand for LMIR5 in mouse ischemia/reperfusion injury of the kidneys. In this article, we show that LMIR5 is implicated in LPS-induced sepsis in mice. Notably, neutrophils constitutively released a soluble form of LMIR5 (sLMIR5) through proteolytic cleavage of surface LMIR5. Stimulation with TLR agonists augmented the release of sLMIR5. LPS administration or peritonitis induction increased serum levels of sLMIR5 in mice, which was substantially inhibited by neutrophil depletion. Thus, neutrophils were the main source of LPS-induced sLMIR5 in vivo. On the other hand, i.p. administration of LMIR5-Fc, a surrogate of sLMIR5, bound to resident macrophages (M) and stimulated transient inflammation in mice. Consistently, LMIR5-Fc induced in vitro cytokine production of peritoneal M via its unknown ligand. Interestingly, LMIR5 deficiency profoundly reduced systemic cytokine production and septic mortality in LPS-administered mice, although it did not affect in vitro cytokine production of LPS-stimulated peritoneal M. Importantly, the resistance of LMIR5-deficient mice to LPS- or peritonitis-induced septic death was decreased by LMIR5-Fc administration, implicating sLMIR5 in LPS responses in vivo. Collectively, neutrophil-derived sLMIR5 amplifies LPS-induced lethal inflammation.  相似文献   
83.
84.
MILL (MHC class I-like located near the leukocyte receptor complex) is a family of MHC class I-like molecules encoded outside the MHC, which displays the highest sequence similarity to human MICA/B molecules among known class I molecules. In the present study, we show that the two members of the mouse MILL family, MILL1 and MILL2, are GPI-anchored glycoproteins associated with beta2-microglobulin (beta2m) and that cell surface expression of MILL1 or MILL2 does not require functional TAP molecules. MILL1 and MILL2 molecules expressed in bacteria could be refolded in the presence of beta2m, without adding any peptides. Hence, neither MILL1 nor MILL2 is likely to be involved in the presentation of peptides. Immunohistochemical analysis revealed that MILL1 is expressed in a subpopulation of thymic medullary epithelial cells and a restricted region of inner root sheaths in hair follicles. The present study provides additional evidence that MILL is a class I family distinct from MICA/B.  相似文献   
85.
The Ras/B-Raf/C-Raf/MEK/ERK signaling cascade is critical for the control of many fundamental cellular processes, including proliferation, survival, and differentiation. This study demonstrated that small interfering RNA-dependent knockdown of diacylglycerol kinase η (DGKη) impaired the Ras/B-Raf/C-Raf/MEK/ERK pathway activated by epidermal growth factor (EGF) in HeLa cells. Conversely, the overexpression of DGKη1 could activate the Ras/B-Raf/C-Raf/MEK/ERK pathway in a DGK activity-independent manner, suggesting that DGKη serves as a scaffold/adaptor protein. By determining the activity of all the components of the pathway in DGKη-silenced HeLa cells, this study revealed that DGKη activated C-Raf but not B-Raf. Moreover, this study demonstrated that DGKη enhanced EGF-induced heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf. DGKη physically interacted with B-Raf and C-Raf, regulating EGF-induced recruitment of B-Raf and C-Raf from the cytosol to membranes. The DGKη-dependent activation of C-Raf occurred downstream or independently of the already known C-Raf modifications, such as dephosphorylation at Ser-259, phosphorylation at Ser-338, and interaction with 14-3-3 protein. Taken together, the results obtained strongly support that DGKη acts as a novel critical regulatory component of the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade via a previously unidentified mechanism.The Ras/Raf/MEK3/ERK signaling pathway is critical for the transduction of the extracellular signals to the nucleus, regulating diverse physiological processes such as cell proliferation, differentiation, and survival (1, 2). The binding of extracellular ligands, such as growth factors and cytokines, to cell surface receptors activates Ras. The Raf serine/threonine kinase transmits signals from activated Ras to the downstream protein kinases, MEK1 and MEK2, subsequently leading to activation of ERK1 and ERK2.In mammals, the Raf kinase consists of three isoforms, A-Raf, B-Raf, and C-Raf (Raf-1). It is clinically known that both B-Raf and C-Raf mutations are associated with human cancers (35). Knock-out mouse studies demonstrated that each individual Raf isoform has distinct functions, although the three Raf isoforms have high homology in the amino acid sequence (6). The mechanisms underlying C-Raf activation are complicated and thus are not completely understood (3). In response to extracellular signals, C-Raf is initially recruited from cytosol to the plasma membrane and undergo conformational changes by binding directly to the active Ras (7). In addition, other modifications and factors are required for the sufficient activation of C-Raf. For example, dephosphorylation of Ser-259 and phosphorylation of Ser-338, Tyr-341, Thr-491, and Ser-494 are critical for the activation of C-Raf (811). Feedback phosphorylation of C-Raf by ERK was also reported to be important for the modulation of C-Raf activity (12, 13). C-Raf activity is regulated by the interaction with 14-3-3 protein (14). Moreover, the heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf, has been reported to play an essential role in the activation of the MEK-ERK signaling pathway (1517). Although B-Raf and C-Raf are the central regulatory components in the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade involved in a variety of pathophysiological events, the activation mechanisms of C-Raf by B-Raf are still unclear.Diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol to generate phosphatidic acid. DGK has been recently recognized as an emerging key regulator in a wide range of cell signaling systems (1820). To date, 10 mammalian DGK isozymes have been identified. They characteristically contain two or three protein kinase C-like C1 domains and a catalytic region and are subdivided into five subtypes according to their structural features (1820). Their structural variety and distinct expression patterns in tissues allow us to presume that each DGK isozyme has its own biological functions. Indeed, recent studies have revealed that individual DGK isozymes play distinct roles in cell functions through interactions with unique partner proteins such as protein kinase C (21, 22), Ras guanyl nucleotide-releasing protein (23, 24), phosphatidylinositol-4-phosphate 5-kinase (25), chimerins (26, 27), AP-2 (28), and PSD-95 (29).DGKη belongs to the type II DGKs containing a pleckstrin homology domain at the N terminus and the separated catalytic region (19, 30). Two alternative splicing products of DGKη have been identified as DGKη1 and -η2 (31). DGKη2 possesses a sterile α-motif (SAM) domain at the C terminus, whereas DGKη1 does not. This study demonstrated that the expression levels of DGKη1 and -η2 were regulated differently by glucocorticoid, and that they were translocated from the cytoplasm to endosomes in response to stress stimuli as osmotic shock and oxidative stress (31). However, the physiological roles of DGKη remain unknown.This study showed that siRNA-dependent knockdown of DGKη inhibits cell proliferation of the HeLa cells. In addition, DGKη is required for the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade activated by epidermal growth factor (EGF). Intriguingly, DGKη regulates recruitment of B-Raf and C-Raf from cytosol to membranes and their heterodimerization. Moreover, this study demonstrated that DGKη activates C-Raf but not B-Raf in an EGF-dependent manner. The data show DGKη as a novel key regulator of the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway.  相似文献   
86.
The relationship between cellular aging and aging of entire organisms has been studied extensively. The findings are confusing, however, and no clear relationships have been demonstrated. The conflicting data may be due to individual differences among the donors of the studied cells. It is crucial to identify the changes in cellular properties that are the result of the aging process. Here, we used human dermal fibroblast cell lines established from a single donor at different ages to assess the influence of ultraviolet A (UVA) on cellular aging. These cell lines have the same genetic background and were obtained from a restricted body region. The results indicated that cellular aging was accelerated by UVA irradiation in a donor age-dependent manner. The ratio of lifespan shortening increased with donor age. Increased donor age not only decreased cell division, but also increased the growth arrest response to UVA irradiation. The characteristics of the cultured cells reflected the age-related changes in dermal fibroblasts.  相似文献   
87.
Effective application of elastin materials for vascular grafts in tissue engineering requires these materials to retain the elastic and biological properties of native elastin. To clarify the influence of soluble elastin isotypes on vascular smooth muscle cells (VSMCs), soluble elastin was prepared from insoluble elastin by hydrolysis with oxalic acid. Its fractions were separated and classified into three isotypes. Elastin retaining 2.25 mol% of cross-linked structures exhibited significant differentiation of VSMCs, which adhered to the elastin with contraction phenotypes similar to that of native elastin, causing proliferation to cease. This trend was more strongly demonstrated in cotton-like elastin fibers with a new cross-linker. The results suggest that elastin isotypes could be applied as new effective biomaterials for suppressing intimal hyperplasia in vascular grafts.  相似文献   
88.
A PIP-family protein is required for biosynthesis of tobacco alkaloids   总被引:1,自引:0,他引:1  
Plants in the Nicotiana genus produce nicotine and related pyridine alkaloids as a part of their chemical defense against insect herbivores. These alkaloids are formed by condensation of a derivative of nicotinic acid, but the enzyme(s) involved in the final condensation step remains elusive. In Nicotiana tabacum, an orphan reductase A622 and its close homolog A622L are coordinately expressed in the root, upregulated by methyl jasmonate treatment, and controlled by the NIC regulatory loci specific to the biosynthesis of tobacco alkaloids. Conditional suppression of A622 and A622L by RNA interference inhibited cell growth, severely decreased the formation of all tobacco alkaloids, and concomitantly induced an accumulation of nicotinic acid β-N-glucoside, a probable detoxification metabolite of nicotinic acid, in both hairy roots and methyl jasmonate-elicited cultured cells of tobacco. N-methylpyrrolinium cation, a precursor of the pyrrolidine moiety of nicotine, also accumulated in the A622(L)-knockdown hairy roots. We propose that the tobacco A622-like reductases of the PIP family are involved in either the formation of a nicotinic acid-derived precursor or the final condensation reaction of tobacco alkaloids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
89.
The polyubiquitin chain is generated by the sequential addition of ubiquitin moieties to target molecules, a reaction between specific lysine residues that is catalyzed by E3 ubiquitin ligase. The Lys48-linked and Lys63-linked polyubiquitin chains are well established inducers of proteasome-dependent degradation and signal transduction, respectively. The concept has recently emerged that polyubiquitin chain-mediated regulation is even more complex because various types of atypical polyubiquitin chains have been discovered in vivo. Here, we demonstrate that a novel complex ubiquitin chain functions as an internalization signal for major histocompatibility complex class I (MHC I) membrane proteins in vivo. Using a tetracycline-inducible expression system and quantitative mass spectrometry, we show that the polyubiquitin chain generated by the viral E3 ubiquitin ligase of Kaposi sarcoma-associated herpesvirus, MIR2, is a Lys11 and Lys63 mixed-linkage chain. This novel ubiquitin chain can function as an internalization signal for MHC I through its association with epsin1, an adaptor molecule containing ubiquitin-interacting motifs.  相似文献   
90.
Viable cells of a halotolerantBrevibacterium sp. JCM 6894 grown in a liquid medium with pH 7.1 were enumerated as the colony-forming cells on three kinds of agar media with different pH values. Unexpectedly they were lower at neutral pH rather than acidic or alkaline pH. This tendency was invariable regardless of the changes in the concentrations of nutrients in the agar medium as well as in the growth phases of the cells. From the comparison of cell growth between liquid and solid media with different pHs, we notified the importance of the pH changes in liquid medium accompanied with growth. Effects of salts and pH of the liquid medium on protonmotive force (Δp) was estimated from membrane potentials (ΔΨ) and proton gradients (ΔpH) of the strain JCM 6894. In the absence of salts, Δp of the strain JCM 6894 was the largest at neutral pH, which was conflicting with the result of cell viability. The addition of NaCl led to the reduction of Δp at acidic pH, mainly due to the dissipation of ΔΨ, which seems to be consistent with the lower numbers of colony formed at acidic pH in the presence of NaCl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号