首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   43篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   10篇
  2014年   18篇
  2013年   24篇
  2012年   24篇
  2011年   19篇
  2010年   11篇
  2009年   16篇
  2008年   16篇
  2007年   14篇
  2006年   21篇
  2005年   25篇
  2004年   28篇
  2003年   10篇
  2002年   15篇
  2001年   20篇
  2000年   16篇
  1999年   15篇
  1998年   6篇
  1997年   9篇
  1996年   12篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   41篇
  1991年   29篇
  1990年   16篇
  1989年   20篇
  1988年   12篇
  1987年   19篇
  1986年   15篇
  1985年   19篇
  1984年   16篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1973年   4篇
  1972年   2篇
  1970年   2篇
  1969年   8篇
  1967年   3篇
排序方式: 共有645条查询结果,搜索用时 31 毫秒
101.
Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm.  相似文献   
102.
We investigated selective culturing conditions for the production of transgenic soybeans. In this culturing system, we used the acetolactate synthase (ALS)-inhibiting herbicide-resistance gene derived from rice (Os-mALS gene) as a selectable marker gene instead of that derived from bacteria, which interfered with the cultivation and practical usage of transgenic crops. T1 soybeans grown from one regenerated plant after selection of the ALS-targeting pyrimidinyl carboxy (PC) herbicide bispyribac-sodium (BS) exhibited herbicide resistance, and the introduction and expression of the Os-mALS gene were confirmed by genetic analysis. The selective culturing system promoted by BS herbicide, in which the Os-mALS gene was used as a selectable marker, was proved to be applicable to the production of transgenic soybeans, despite the appearance of escaped soybean plants that did not contain the Os-mALS transgene.  相似文献   
103.
The repair of joint surface defects remains a clinical challenge, as articular cartilage has a limited healing response. Despite this, articular cartilage does have the capacity to grow and remodel extensively during pre‐ and post‐natal development. As such, the elucidation of developmental mechanisms, particularly those in post‐natal animals, may shed valuable light on processes that could be harnessed to develop novel approaches for articular cartilage tissue engineering and/or regeneration to treat injuries or degeneration in adult joints. Much has been learned through mouse genetics regarding the embryonic development of joints. This knowledge, as well as the less extensive available information regarding post‐natal joint development is reviewed here and discussed in relation to their possible relevance to future directions in cartilage tissue repair and regeneration. J. Cell. Biochem. 107: 383–392, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
104.
A series of trifluoromethyl, benzothiazolyl or thiazolyl ketone-containing peptidic compounds as SARS-CoV 3CL protease inhibitors were developed and their potency was evaluated by in vitro protease inhibitory assays. Three candidates had encouraging results for the development of new anti-SARS compounds.  相似文献   
105.
1.  Nitrogen (N) and phosphorus (P) are essential nutrients for photosynthetic carbon assimilation and most frequently limit primary productivity in terrestrial ecosystems. Efficient use of those nutrients is important for plants growing in nutrient-poor environments.
2.  We investigated the pattern of photosynthetic phosphorus-use efficiency (PPUE) in comparison with photosynthetic nitrogen-use efficiency (PNUE) along gradients of P and N availability across biomes with 340 tree and shrub species. We used both total soil N and P concentration and foliar N/P ratios for indicating nutrient-availability gradients.
3.  Photosynthetic phosphorus-use efficiency increased with greater leaf mass per area (LMA) toward decreasing P availability. By contrast, PNUE decreased with greater LMA towards decreasing N and P availability.
4.  The increase in PPUE with decreasing P availability was caused by the net effects of a relatively greater reduction in foliar P concentration and a relatively constant photosynthetic carbon assimilation rate. The decrease in PNUE with decreasing N availability was caused by the effects of a reduction in photosynthetic carbon assimilation rate with greater LMA.
5. Synthesis . Our results suggest that higher PPUE may be an effective leaf-level adaptation to P-poor soils, especially in tropical tree species. Future research should focus on the difference between PPUE and PNUE in relation to leaf economics, physiology and strategy.  相似文献   
106.

Background

In eukaryotic cells, DNA polymerase δ (Polδ), whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Polδ in mammalian development has not been thoroughly investigated.

Methodology/Principal Findings

To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Polδ-null (Pold1 −/−) mice and D400A exchanged Polδ (Pold1 exo/exo) mice. The D400A exchange caused deficient 3′–5′ exonuclease activity in the Polδ protein. In Polδ-null mice, heterozygous mice developed normally despite a reduction in Pold1 protein quantity. In contrast, homozygous Pold1 −/− mice suffered from peri-implantation lethality. Although Pold1 −/− blastocysts appeared normal, their in vitro culture showed defects in outgrowth proliferation and DNA synthesis and frequent spontaneous apoptosis, indicating Polδ participates in DNA replication during mouse embryogenesis. In Pold1 exo/exo mice, although heterozygous Pold1 exo/+ mice were normal and healthy, Pold1 exo/exo and Pold1 exo/− mice suffered from tumorigenesis.

Conclusions

These results clearly demonstrate that DNA polymerase δ is essential for mammalian early embryogenesis and that the 3′–5′ exonuclease activity of DNA polymerase δ is dispensable for normal development but necessary to suppress tumorigenesis.  相似文献   
107.
Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer’s disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.  相似文献   
108.
Maggot debridement therapy (MDT) is effective for treating intractable wounds, but its precise molecular mechanism, including the association between MDT and growth factors, remains unknown. We administered MDT to nine patients (66.3 ± 11.8 yr, 5 male and 4 female) with intractable wounds of lower extremities because they did not respond to conventional therapies. Significant increases of hepatocyte growth factor (HGF) levels were observed in femoral vein blood during 48 h of MDT (P < 0.05), but no significant change was found for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1), or tumor necrosis factor-α (TNF-α). We conducted NIH-3T3 cell stimulation assay to evaluate the relation between HGF and protease activity in excretion/secretion (ES) derived from maggots. Compared with the control group, HGF was significantly higher in the 0.05 μg/ml ES group (P < 0.01). Furthermore, protease inhibitors suppressed the increase of HGF (P < 0.05). The HGF expression was increased in proportion to the ES protein concentration of 0.025 to 0.5 μg/ml. In fact, ES showed stronger capability of promoting HGF production and less cytotoxicity than chymotrypsin or bromelain. HGF is an important factor involved in cutaneous wound healing. Therefore, these results suggest that formation of healthy granulation tissue observed during MDT results from the increased HGF. Further investigation to identify molecules enhancing HGF expression by MDT will contribute greatly to drug target discovery for intractable wound healing therapy.  相似文献   
109.

Background

Amorphous silica particles with the primary dimensions of a few tens of nm, have been widely applied as additives in various fields including medicine and food. Especially, they have been widely applied in powders for making tablets and to coat tablets. However, their behavior and biological effects in the gastrointestinal tracts associated with oral administration remains unknown.

Methods

Amorphous silica particles with diameters of 50, 100, and 200 nm were incubated in the fasted-state and fed-state simulated gastric and intestinal fluids. The sizes, intracellular transport into Caco-2 cells (model cells for intestinal absorption), the Caco-2 monolayer membrane permeability, and the cytotoxicity against Caco-2 cells were then evaluated for the silica particles.

Results

Silica particles agglomerated in fed-state simultaneous intestinal fluids. The agglomeration and increased particles size inhibited the particles' absorption into the Caco-2 cells or particles' transport through the Caco-2 cells. The in vitro cytotoxicity of silica particles was not observed when the average size was larger than 100 nm, independent of the fluid and the concentration.

Conclusion

Our study indicated the effect of diet on the agglomeration of silica particles. The sizes of silica particles affected the particles' absorption into or transport through the Caco-2 cells, and cytotoxicity in vitro, depending on the various biological fluids.

General significance

The findings obtained from our study may offer valuable information to evaluate the behavior of silica particles in the gastrointestinal tracts or safety of medicines or foods containing these materials as additives.  相似文献   
110.
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号