首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   6篇
  69篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2015年   1篇
  2014年   5篇
  2013年   14篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1985年   1篇
排序方式: 共有69条查询结果,搜索用时 0 毫秒
41.
DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.  相似文献   
42.
Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.  相似文献   
43.
The crooked neck (crn) gene of Drosophila melanogaster encodes a scaffold protein carrying multiple tetratricopeptide repeat (TPR) motifs, and its mutation results in a reduction in the number of neuroblasts and lethality during larval stages. Here, we isolated two structurally related genes from a rat embryonic brain cDNA library. One gene is the rat orthologue of crn, which encodes 690 amino acids including 16 copies of TPR. The other gene, ATH55, encodes an 855 amino acid protein including 21 TPR motifs, which presumably represents a rat crn homologue and an orthologue of human XAB2. Both genes are highly expressed in embryonic brain but their expressions decrease during development. ATH55-like immunoreactivity is present in the ventricular zone and newly formed cortical plate, while CRN-like immunoreactivity is more abundant in a younger ventricular zone. In agreement, both proteins were found to be enriched in cultured neural stem cells and to decrease in response to cell differentiation signals. As indicated for the yeast CRN-like protein, ATH55 and CRN immunoreactivities were both recovered in the nuclear fraction and detected in the splicing complex carrying pre-mRNA. These findings suggest that both TPR-motif-containing proteins are involved in RNA processing of mammalian neural stem cells and their immediate descendants.  相似文献   
44.
Summary The purpose of this work was to localize the DNA regions necessary for the transposition of Tn7. Several deletions of Tn7 were constructed by the excision of DNA fragments between restriction sites. The ability of these deleted Tn7s to transpose onto the recipient plasmid RP4 was examined. All the deleted Tn7s isolated in this work had lost their transposing capability. The possibility of complementing them was studied using plasmids containing all or part of Tn7. Two deleted Tn7s could not be complemented by an entire Tn7 indicating that a DNA sequence greater than the 42 bp terminal sequence is needed for recognition of the transposon by a transposition function. Four other deleted Tn7s could be complemented by Tn7. One of these was studied intensively in complementation experiments using different parts of Tn7 to obtain transposition. The results obtained allow us to propose that all genes needed for transposition of Tn7 onto plasmids are contained in a DNA segment of between 6.0 and 7.4 kb. Furthermore, one essential function must be contained in a DNA fragment longer than 2.5 kb on the right-hand end of Tn7. The classification of Tn7 with regard to the other transposable elements is discussed.  相似文献   
45.
46.
47.
Cancer cells are often associated with secondary chromosomal rearrangements, such as deletions, inversions, and translocations, which could be the consequence of unrepaired/misrepaired DNA double strand breaks (DSBs). Nonhomologous DNA end joining is one of the most common pathways to repair DSBs in higher eukaryotes. By using oligomeric DNA substrates mimicking various endogenous DSBs in a cell-free system, we studied end joining (EJ) in different cancer cell lines. We found that the efficiency of EJ varies among cancer cells; however, there was no remarkable difference in the mechanism and expression of EJ proteins. Interestingly, cancer cells with lower levels of EJ possessed elevated expression of BCL2 and vice versa. Removal of BCL2 by immunoprecipitation or protein fractionation led to elevated EJ. More importantly, we show that overexpression of BCL2 or the addition of purified BCL2 led to the down-regulation of EJ. Further, we found that BCL2 interacts with KU proteins both in vitro and in vivo. Hence, our results suggest that EJ in cancer cells could be negatively regulated by the anti-apoptotic protein, BCL2, and this may contribute toward increased chromosomal abnormalities in cancer.  相似文献   
48.
49.
Trypanosomatids are divergent eukaryotes of high medical and economical relevance. Their biology exhibits original features that remain poorly understood; particularly, Leishmania is known for its high degree of genomic plasticity that makes genomic manipulation challenging. CRISPR‐Cas9 has been applied successfully to these parasites providing a robust tool to study non‐essential gene functions. Here, we have developed a versatile inducible system combining Di‐Cre recombinase and CRISPR‐Cas9 advantages. Cas9 is used to integrate the LoxP sequences, and the Cre‐recombinase catalyses the recombination between LoxP sites, thereby excising the target gene. We used a Leishmania mexicana cell line expressing Di‐Cre, Cas9, and T7 polymerase and then transfected donor DNAs and single guide RNAs as polymerase chain reaction (PCR) products. Because the location of LoxP sequences in the genomic DNA can interfere with the function and localisation of certain proteins of interest, we proposed to target the least transcribed regions upstream and/or downstream the gene of interest. To do so, we developed “universal” template plasmids for donor DNA cassettes with or without a tag, where LoxP sequences may be located either immediately upstream the ATG and downstream the stop codon of the gene of interest, or in the least transcribed areas of intergenic regions. Our methodology is fast, PCR‐based (molecular cloning‐free), highly efficient, versatile, and able to overcome the problems posed by genomic plasticity in Leishmania.  相似文献   
50.
The EU Tissues and Cells Directive (2004/23/EC, 2006/17/EC, 2006/86/EC) (EUTCD) provides standards for quality and safety for all aspects of banking of tissues and cells for clinical applications. Commission Directive 2006/17/EC stipulates that the complete donor record with all the medical information is assessed for suitability before releasing tissues for clinical use. The aim of this study was to investigate the medical reasons for post-procurement donor exclusion, to identify the various potential sources for gathering information about donors’ medical and behavioural history and to evaluate their contribution to maximising the safety of donations. Information was collected from the Tissue Services (TS) records of 1000 consecutive deceased donors submitted to National Health Service Blood and Transplant (NHSBT) medical officers for authorisation for release for subsequent tissue processing and then for transplantation. Of the 1000 donors 60 (6%) were excluded because they did not fulfil the donor selection requirements of the EUTCD and NHSBT donor selection guidelines. The main reasons for medical exclusion were the presence of significant local or systemic infection in 32 donors (53% of those excluded for medical reasons) and a history of past or occult malignancy in 9 donors (15% of those excluded for medical reasons) which was not identified prior to procurement. The information leading to post-procurement exclusion was obtained from autopsy reports in 35 of the 60 excluded donors for medical reasons (58%) and from the general practitioner for 10 donors (17% of those excluded for medical reasons). In summary, careful evaluation of complete donor records reduces the potential risk of disease transmission by tissue allografts and ensures compliance with regulations and guidelines. The findings may lead to changes in donor selection policies with the aim of improving efficiency without compromising safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号