首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2015年   1篇
  2014年   5篇
  2013年   14篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1985年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
31.
A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for the establishment of proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE(16)) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model pre-mRNAs showed that CE(16) can repress splicing of upstream introns, and that mutagenesis or replacement of CE(16) can relieve this inhibition. An affinity selection assay with biotinylated CE(16) RNA demonstrated specific binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract significantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-specific activation of the E16 splicing switch in concert with a dramatic and specific down-regulation of hnRNP A/B protein expression. These findings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in pre-mRNA splicing.  相似文献   
32.
33.
Nucleophosmin (NPM) is a multifunctional phosphoprotein, being involved in ribosome assembly, pre-ribosomal RNA processing, DNA duplication, nucleocytoplasmic protein trafficking, and centrosome duplication. NPM is phosphorylated by several kinases, including nuclear kinase II, casein kinase 2, Polo-like kinase 1 and cyclin-dependent kinases (CDK1 and 2), and these phosphorylations modulate the activity and function of NPM. We have previously identified Thr(199) as the major phosphorylation site of NPM mediated by CDK2/cyclin E (and A), and this phosphorylation is involved in the regulation of centrosome duplication. In this study, we further examined the effect of CDK2-mediated phosphorylation of NPM by using the antibody that specifically recognizes NPM phosphorylated on Thr(199). We found that the phospho-Thr(199) NPM localized to dynamic sub-nuclear structures known as nuclear speckles, which are believed to be the sites of storage and/or assembly of pre-mRNA splicing factors. Phosphorylation on Thr(199) by CDK2/cyclin E (and A) targets NPM to nuclear speckles, and enhances the RNA-binding activity of NPM. Moreover, phospho-Thr(199) NPM, but not unphosphorylated NPM, effectively represses pre-mRNA splicing. These findings indicate the involvement of NPM in the regulation of pre-mRNA processing, and its activity is controlled by CDK2-mediated phosphorylation on Thr(199).  相似文献   
34.
From a disease-prevention perspective, recent progress in phytochemical and nutraceutical research clearly suggests (benefits outweigh the risk pattern). Although powerful antioxidant properties have been the most acclaimed mechanism of action for these entities, the individual antioxidants studied in clinical trials do not appear to have consistent preventative effects. The actions of the antioxidant nutrients alone do not explain the observed health benefits of diets rich in fruits and vegetables for chronic diseases. Therefore, we proposed that the additive and synergistic effects of phytochemicals in fruits and vegetables are responsible for these potent antioxidant and anticancer activities, and that the benefit of a diet rich in fruits and vegetables is attributed to the complex mixture of phytochemicals present in plants [1]. Surprisingly, however, no studies have attempted to evaluate the combined antitoxic potential of a phytochemical-nutraceutical mixture (PNM) in in vivo models. Therefore, this study, for the first time, was designed to investigate whether pre-exposure to a unique PNM has the ability to impede mechanistic events involved in acetaminophen (APAP)-induced hepatotoxicity. Besides several vitamins and minerals in balanced proportions (~US RDA), the PNM used in this investigation contained several well-known phytochemicals such as citrus flavonoids, red wine polyphenols, Garcinia, Gymnema, Ginkgo, Ephedra sinica, Camelia sinensis, Silybum, Guarana, Eluthero, Allium sativum and Ocimum basilicum extracts. To evaluate PNM's antitoxic potential, groups of animals ICR mice, 3 months old) received either a control diet or PNM containing diets (1X and 10X) for 4 weeks. On day-28, animals were divided into two subgroups. Half the animals were administered normal saline and the other half received 400mg/kg ip injections of APAP. All the animals were sacrificed 24h after APAP exposure. Serum and tissue (liver and kidneys) samples were analyzed. APAP alone caused massive liver injury (nearly 495-fold increase in ALT) and oxidative stress (Lipid peroxidation: 268% increase in MDA) coupled with genomic DNA fragmentation (288% increase). Exposure to 1X-PNM for 28 days significantly reduced animal mortality and all the APAP-induced biochemical events (In 1X-PNM + AP: ALT leakage decreased to 54 fold; MDA accumulation decreased to 125%, and DNA fragmentation decreased to 122%), whereas 10X-PNM + APAP slightly escalated both oxidative stress and genomic DNA fragmentation preceding liver injury. Liver homogenates subjected to western blot analysis disclosed the ability of 1X-PNM to counteract APAP-induced decrease in Bcl-xL expression. Histopathological evaluation of stained liver tissue sections indicated anti-apoptogenic and anti-necrogenic reponses coupled with near complete prevention of glycogen depletion by 1X-PNM. Collectively, our investigation suggests that a mixture containing an assortment of phytochemicals/nutraceuticals may serve as a much more powerful blend in preventing drug or chemical-induced organ injuries than a single phytochemical or nutraceutical entity. In addition, ephedra and caffeine containing PNM-exposure in a controlled manner may potentially shield vital target organs from toxicities caused by intentional, unintentional or accidental exposures to structurally and functionally diverse drug and chemical entities.  相似文献   
35.
36.
In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.  相似文献   
37.
38.
In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27 % α-helices (85 aa residues), 5.7 % β-sheets (19 aa residues) and 67.19 % random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (?284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.  相似文献   
39.
DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.  相似文献   
40.
BackgroundDipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites’ growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species.MethodologyOrthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples.FindingsSequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex.A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples.ConclusionThe study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号