首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3041篇
  免费   202篇
  国内免费   2篇
  3245篇
  2023年   4篇
  2022年   16篇
  2021年   36篇
  2020年   25篇
  2019年   30篇
  2018年   37篇
  2017年   31篇
  2016年   63篇
  2015年   121篇
  2014年   113篇
  2013年   167篇
  2012年   216篇
  2011年   207篇
  2010年   125篇
  2009年   138篇
  2008年   220篇
  2007年   239篇
  2006年   228篇
  2005年   239篇
  2004年   219篇
  2003年   192篇
  2002年   166篇
  2001年   32篇
  2000年   16篇
  1999年   33篇
  1998年   24篇
  1997年   33篇
  1996年   24篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   23篇
  1991年   16篇
  1990年   22篇
  1989年   12篇
  1988年   15篇
  1987年   9篇
  1986年   14篇
  1985年   12篇
  1984年   7篇
  1983年   5篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3245条查询结果,搜索用时 15 毫秒
41.
The genusPittosporum includes about 160 species. Four species ofPittosporum occur in the Bonin Islands, and all of these are endemic to the islands. Electrophoretic studies of the four endemic species,P. tobira, from the Japanese mainland, andP. lutchuense var.denudatum from the Ryukyu Islands, were used to determine the origin and speciation pattern of the endemic species. 259 individuals were sampled from ten populations. Twenty loci in nine enzyme systems were resolved and used to calculate the gene frequencies for each population. A low genetic diversity was observed in three of the Bonin Island species, as is reported for other oceanic island plants. The exception,P. boninense, has the largest population size and widest distribution. A dendrogram generated by the UPGMA method shows two clusters. One consists of only the Bonin endemics, suggesting a monophyletic origin for these species.  相似文献   
42.
An extensive size homoplasy was found at microsatellite locus B11 of the bumblebee, Bombus diversus, in northern to central Honshu, Japan. A total of 16 alleles of different nucleotide sequences in five length morphs was obtained at B11 for this species. Of these alleles, five were 141 base pairs (bp) in length, five were 137 bp and four were 133 bp. Allele diversity in each length morph was high compared with previous studies. It is noteworthy that this extensive size homoplasy was found in a relatively small geographic area, in contrast to results from previous studies. Reconstruction of a median‐joining network revealed the complicated evolutionary process of the locus, involving insertion/deletion and point mutations. Preliminary estimation of the mutation rate of the B11 locus in B. diversus gives a value comparable to those estimated from experimental Drosophila populations. Effects of the extensive size homoplasy in population genetic studies is discussed.  相似文献   
43.
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project ‘Principles of pluripotent stem cells underlying plant vitality’ was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.  相似文献   
44.
45.
The sixth International Symposium on Autophagy took place in October 2012 in Okinawa, Japan. It brought together scientists from all over the world to cultivate a better understanding of cutting‐edge autophagy research from molecular mechanisms to disease states.  相似文献   
46.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
47.
48.
We have analyzed the ranging patterns of the Mimikire group (M group) of chimpanzees in the Mahale Mountains National Park, Tanzania. During 16 years, the chimpanzees moved over a total area of 25.2 or 27.4 km2, as estimated by the grid-cell or minimum convex polygon (MCP) methods, respectively. Annually, the M group used an average of 18.4 km2, or approximately 70 %, of the total home-range area. The chimpanzees had used 80 % of their total home range after 5 years and 95 % after 11 years. M group chimpanzees were observed more than half of the time in areas that composed only 15 % of their total home range. Thus, they typically moved over limited areas, visiting other parts of their range only occasionally. On average, the chimpanzees used 7.6 km2 (in MCP) per month. Mean monthly range size was smallest at the end of the rainy season and largest at the end of the dry season, but there was much variability from year to year. The chimpanzees used many of the same areas every year when Saba comorensis fruits were abundant between August and January. In contrast, the chimpanzees used several different areas of their range in June. Here range overlap between years was relatively small. Over the 16 years of the study we found that the M group reduced their use of the northern part of their range and increased their frequency of visits to the eastern mountainous side of their home range. Changes in home-range size correlated positively with the number of adult females but not with the number of adult males. This finding does not support a prediction of the male-defended territory model proposed for some East African chimpanzee unit-groups.  相似文献   
49.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
50.
Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4−/−Abca4−/−Rdh8−/− mice displayed milder retinal degenerative phenotypes than Abca4−/−Rdh8−/− mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号