首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4328篇
  免费   283篇
  国内免费   2篇
  4613篇
  2022年   23篇
  2021年   45篇
  2020年   32篇
  2019年   44篇
  2018年   50篇
  2017年   41篇
  2016年   87篇
  2015年   146篇
  2014年   137篇
  2013年   227篇
  2012年   267篇
  2011年   248篇
  2010年   162篇
  2009年   164篇
  2008年   270篇
  2007年   303篇
  2006年   281篇
  2005年   299篇
  2004年   275篇
  2003年   238篇
  2002年   214篇
  2001年   85篇
  2000年   91篇
  1999年   82篇
  1998年   50篇
  1997年   47篇
  1996年   40篇
  1995年   33篇
  1994年   34篇
  1993年   37篇
  1992年   49篇
  1991年   32篇
  1990年   40篇
  1989年   29篇
  1988年   45篇
  1987年   35篇
  1986年   30篇
  1985年   37篇
  1984年   28篇
  1983年   24篇
  1982年   27篇
  1981年   25篇
  1980年   18篇
  1979年   13篇
  1978年   11篇
  1976年   13篇
  1975年   12篇
  1974年   8篇
  1973年   8篇
  1968年   8篇
排序方式: 共有4613条查询结果,搜索用时 15 毫秒
91.
Clostridium perfringens alpha-toxin degrades phosphatidylcholine (PC) in the bilayer of liposomes and destroys the membrane. The effect of the type and position of unsaturation in the fatty acyl chain of PC (18:0/18:1 PC) synthesized on the toxin-induced leakage of carboxyfluorescein (CF) from PC liposomes was examined. Differential scanning calorimetry showed that the phase transition temperature (T(m)) was minimal when the triple bond was positioned at C (9) in the sn-2 acyl chain. The toxin-induced CF leakage decreased with the migration of the bond from C (9) to either end of the acyl chain in PC. The PC containing the cis-double bond had a similar T(m) to that with the triple bond, but a lower value than the PC containing the trans-double bond. Furthermore, the toxin-induced leakage from liposomes composed of PC containing the cis-double bond resembled that with PC having the triple bond and was greater than that from liposomes with PC having the trans-double bond. The binding of a H148G mutant to PC liposomes showed a reciprocal relationship in terms of the T(m) value of PC containing the triple bond. These results indicate that the toxin-induced membrane damage is closely related to membrane fluidity in liposomes.  相似文献   
92.
Neoculin, a sweet protein found in the fruit of Curculigo latifolia, has the ability to change sourness into sweetness. Neoculin turns drinking water sweet, indicating that non-acidic compounds may induce the sweetness. We report that ammonium chloride and certain amino acids elicit the intense sweetness of neoculin. Neoculin can thus sweeten amino acid-enriched foods.  相似文献   
93.
We report the expression of a high level of human cyclooxygenase-1 (hCOX-1) in mammalian cells using a novel gene amplification method known as the IR/MAR gene amplification system. IR/MAR-plasmids contain a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) and amplify autonomously without a specific induction process. In this study, the IR/MAR-plasmid pΔBN.AR1 was cotransfected with pCAG-COX1, which expresses hCOX-1, into human HEK293T cells, and G418 and blasticidin S double-resistant cells were obtained in about 1month. Real-time PCR and Western blotting revealed that the expressions of hCOX-1 mRNA and protein in both polyclonal and monoclonal cells were remarkably higher than those in only pCAG-COX1-transfected control cells. Southern blotting demonstrated the amplification of the hCOX-1 gene, and the copy number of clone #43 obtained by the cotransfection of pΔBN.AR1 and pCAG-COX1 was more than 20 copies per cell, though that of clone #14 obtained without using the IR/MAR plasmid pΔBN.AR1 was only two copies. These results indicate that a high level of hCOX-1 expression was achieved as a result of hCOX-1 gene amplification. Furthermore, the crude extract from clone #43 showed a strong COX-1 activity, and the activity was inhibited by the representative COX-1 inhibitor indomethacin, with an IC(50) value of 36nM. These results demonstrate that the IR/MAR gene amplification system is a simple but useful method for generating highly productive mammalian cells.  相似文献   
94.
Two new synthetic pathways to the anti-cancer agent tamoxifen and its derivatives were developed. The first route involved the aldol reaction of benzyl phenyl ketone with acetaldehyde followed by Friedel–Crafts substitution with anisole in the presence of Cl2Si(OTf)2 to produce 1,1,2-triaryl-3-acetoxybutane, a precursor of the tamoxifen derivatives. The second one utilized the novel three-component coupling reaction among aromatic aldehydes, cinnamyltrimethylsilane, and aromatic nucleophiles using HfCl4 as a Lewis acid catalyst to produce 3,4,4-triarylbutene, that is also a valuable intermediate of the tamoxifen derivatives. The former strategy requires a total of 10 steps from the aldol formation to the final conversion to tamoxifen, whereas the latter needs only three or four steps to produce tamoxifen and droloxifene including the installation of the side-chain moiety and the base-induced double-bond migration to form the tetra-substituted olefin structure. This synthetic strategy seems to serve as a new and practical pathway to prepare not only the tamoxifen derivatives but also the other SERMs (selective estrogen receptor modulators) including estrogen-dependent breast cancer and osteoporosis agents.  相似文献   
95.
In the present study, we examined the expression and cytolocalization of protein phosphatase type 1 (PP1) isoforms and nucleolin in human osteoblastic cell line MG63 cells at two boundaries in the cell cycle. We treated MG63 cells with hydroxyurea and nocodazole to arrest the cells at the G(1)/S and G(2)/M boundaries, respectively. As judged from the results of Western blot analysis, PP1 isoforms were expressed differently at each boundary of the cell cycle. Nucleolin was also shown to have a different expression pattern at each boundary. In the hydroxyurea-treated cells, nucleolus-like bodies were bigger in size and decreased in number compared with those in asynchronized cells. However, the subcellular localization of PP1s and nucleolin was not changed. Anti-nucleolin antibody interacted with 110-kDa and 95-kDa proteins present in asynchronized cells and in the cells treated with hydroxyurea. Treatment of the cells with nocodazole decreased the level of the 95-kDa form of nucleolin. In the nocodazole-treated cells, it was impossible to distinguish the distribution of each protein. The phosphorylation status of nucleolin in the cell cycle arrested samples was examined by 2D-IEF-PAGE followed by Western blot analysis. In the case of asynchronized cells or hydroxyurea-treated ones, nucleolin was located at a basic isoelectric point (dephosphorylated status); whereas in the G(2)/M arrest cells, the isoelectric point of nucleolin shifted to an acidic status, indicating that nucleolin was phosphorylated. The present results indicate that PP1 and nucleolin were differently expressed at G(1)/S and G(2)/M boundaries of the cell cycle and acted in a different fashion during cell-cycle progression.  相似文献   
96.
TET family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Here, we show that Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem cells (ESCs) and are induced concomitantly with 5hmC during reprogramming of fibroblasts to induced pluripotent stem cells. ESCs depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1 and display hyperactive Nodal signaling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in?vitro. In Fgf4- and heparin-supplemented culture conditions, Tet1-depleted ESCs activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in midgestation embryo chimeras. Consistent with these findings, Tet1-depleted ESCs?form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm, and ectopic appearance of trophoblastic giant cells. Thus, 5hmC is an epigenetic modification associated with the pluripotent state, and Tet1 functions to regulate the lineage differentiation potential of ESCs.  相似文献   
97.
The addition of phleomycin (25 mug) to primary mouse embryo cells infected with polyoma virus was found to cause 96% inhibition of the synthesis of infectious virus. When ribonucleic acid and protein synthesis was investigated in these cells by use of isotope incorporation, it was found that neither was inhibited drastically. Immunofluorescent staining studies with the use of antibody directed to the viral structural proteins showed that proteins were synthesized in the presence of the antibiotic. However, when deoxyribonucleic acid (DNA) synthesis was investigated, it was found that DNA synthesis in uninfected cells was completely inhibited within the initial 10 hr of phleomycin addition, whereas DNA synthesis in infected cells proceeded at a reduced rate. Selective DNA extraction (Hirt method) of phleomycin-treated infected cells demonstrated that synthesized viral DNA was salt-extractable, similar to that in infected control cells lacking phleomycin. This extracted DNA was further fractionated by ethidium bromide-cesium chloride density gradient equilibrium centrifugation. The phleomycin-treated preparations revealed twice as much component II (circular nicked and linear) as component I (supercoiled) DNA, whereas the DNA from normally infected control cells showed the reverse picture. It was also demonstrated that viral particles synthesized in the presence of phleomycin did not contain component I DNA. This packaged DNA was found to consist of fragments of both the host and viral types. Cells that were prelabeled with (3)H-thymidine and then treated with phleomycin demonstrated host DNA degradation. However, fragments formed from prelabeled host DNA were not encapsidated into viral particles.  相似文献   
98.
Although disialyl glycosphingolipids such as GD3 and GD2 have been considered to be associated with malignant tumours, whether branched-type disialyl glycosphingolipids show such an association is not well understood. We investigated the sialyltransferases responsible for the biosynthesis of DSGG (disialylgalactosylgloboside) from MSGG (monosialylgalactosylgloboside). Among six GalNAc:alpha2,6-sialyltransferases cloned to date, we focused on ST6GalNAc III, V and VI, which utilize sialylglycolipids as substrates. In vitro enzyme analyses revealed that ST6GalNAc III and VI generated DSGG from MSGG with V(max)/K(m) values of 1.91 and 4.16 respectively. Transfection of the cDNA expression vectors for these enzymes resulted in DSGG expression in a renal cancer cell line. Although both ST6GalNAc III and VI genes were expressed in normal kidney cells, the expression profiles of ST6GalNAc VI among 20 renal cancer cell lines correlated clearly with those of DSGG, suggesting that the sialyltransferase involved in the synthesis of DSGG in the kidney is ST6GalNAc-VI. ST6GalNAc-VI and DSGG were found in proximal tubule epithelial cells in normal kidney tissues, while they were downregulated in renal cancer cell lines and cancer tissues. All these findings indicated that DSGG was suppressed during the malignant transformation of the proximal tubules as a maturation arrest of glycosylation.  相似文献   
99.
On staining with a monoclonal antibody raised against microtubule-associated protein-1 (MAP-1), dot-like structures were seen in the nuclei of interphase cells, but not in those of non-cycling G0-arrested cells. Dots were also not seen in the nuclei of non-cycling senescent human cells (IMR-90). A SV40-DNA-transformed subline of IMR-90 with a limited growth potential showed progressive decrease of cells with nuclei containing dots in the final stage of their lifespan. The dots appeared in G0-arrested IMR-90 cells when these cells were incubated in medium of high osmotic pressure for 3 min. In contrast, no dots appeared in senescent cells or X-ray-irradiated young cells when they were incubated in medium of high osmotic pressure. Thus irreversibly non-cycling cells could be distinguished from G0-phase cells on the level of whole cultures. The results suggest that senescent cells lose their division potential by entering an irreversible cell-cycle stage differing from G0.  相似文献   
100.

Background

We have previously reported that repeated treatment of human periodontal ligament cells and murine pre-osteoblast MC3T3-E1 cells with transforming growth factor-beta 1 (TGF-β1) inhibited their osteoblastic differentiation because of decreased insulin-like growth factor-1 (IGF-1) secretion. We also found that IGF-1/PI3K signaling plays an important role in osteoblast differentiation induced by TGF-β1 treatment; however, the downstream signaling controlling this remains unknown. The aim of this current study is to investigate whether Akt activation is required for osteoblast differentiation.

Methodology/Principal Findings

MC3T3-E1 cells were cultured in osteoblast differentiation medium (OBM) with or without 0.1 ng/mL TGF-β1. OBM containing TGF-β1 was changed every 12 h to provide repeated TGF-β1 administration. MC3T3-E1 cells were infected with retroviral vectors expressing constitutively active (CA) or dominant-negative (DN)-Akt. Alkaline phosphatase (ALP) activity and osteoblastic marker mRNA levels were substantially decreased by repeated TGF-β1 treatment compared with a single TGF-β1 treatment. However, expression of CA-Akt restored ALP activity following TGF-β1 treatment. Surprisingly, ALP activity increased following multiple TGF-β1 treatments as the number of administrations of TGF-β1 increased. Activation of Akt significantly enhanced expression of osteocalcin, but TGF-β1 treatment inhibited this. Mineralization of MC3T3-E1 cells was markedly enhanced by CA-Akt expression under all medium conditions. Exogenous IGF-1 restored the down-regulation of osteoblast-related gene expression by repeated TGF-β1 administration. However, in cells expressing DN-Akt, these levels remained inhibited regardless of IGF-1 treatment. These findings indicate that Akt activation is required for the early phase of osteoblast differentiation of MC3T3-E1 cells induced by TGF-β1. However, Akt activation is insufficient to reverse the inhibitory effects of TGF-β1 in the late stages of osteoblast differentiation.

Conclusions

TGF-β1 could be an inducer or an inhibitor of osteoblastic differentiation of MC3T3-E1 cells depending on the state of Akt phosphorylation. Our results indicate that Akt is the molecular switch for TGF-β1-induced osteoblastic differentiation of MC3T3-E1 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号