首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5955篇
  免费   454篇
  国内免费   2篇
  6411篇
  2023年   16篇
  2022年   28篇
  2021年   67篇
  2020年   41篇
  2019年   46篇
  2018年   72篇
  2017年   59篇
  2016年   105篇
  2015年   202篇
  2014年   194篇
  2013年   333篇
  2012年   333篇
  2011年   309篇
  2010年   189篇
  2009年   215篇
  2008年   327篇
  2007年   363篇
  2006年   364篇
  2005年   384篇
  2004年   357篇
  2003年   328篇
  2002年   306篇
  2001年   147篇
  2000年   154篇
  1999年   123篇
  1998年   67篇
  1997年   84篇
  1996年   63篇
  1995年   70篇
  1994年   52篇
  1993年   38篇
  1992年   103篇
  1991年   89篇
  1990年   80篇
  1989年   84篇
  1988年   81篇
  1987年   62篇
  1986年   53篇
  1985年   51篇
  1984年   39篇
  1983年   30篇
  1982年   19篇
  1981年   24篇
  1980年   21篇
  1979年   30篇
  1978年   23篇
  1975年   16篇
  1974年   28篇
  1973年   21篇
  1972年   17篇
排序方式: 共有6411条查询结果,搜索用时 0 毫秒
141.
The molecular role of the RecF protein in loading RecA protein onto single-stranded DNA (ssDNA)-binding protein-coated ssDNA has been obscured by the facility with which the RecO and RecR proteins alone perform this function. We now show that RecFOR and RecOR define distinct RecA loading functions that operate optimally in different contexts. RecFOR, but not RecOR, is most effective when RecF(R) is bound near an ssDNA/double-stranded (dsDNA) junction. However, RecF(R) has no enhanced binding affinity for such a junction. RecO and RecR proteins are both required under all conditions in which the RecFOR pathway operates. The RecOR pathway is uniquely distinguished by a required interaction between RecO protein and the ssDNA binding protein C terminus. The RecOR pathway is more efficient for RecA loading onto ssDNA when no proximal dsDNA is available. A merger of new and published results leads to a new model for RecFOR function.  相似文献   
142.
PURPOSE OF WORK: Soluble protein expression is an important first step during various types of protein studies. Here, we present the screening strategy of secretable mutant. The strategy aimed to identify those cysteine residues that provoke protein misfolding in the heterologous expression system. Intentional mutagenesis studies should consider the size of the library and the time required for expression screening. Here, we proposed a cysteine-to-serine shuffling mutation strategy (CS shuffling) using a Saccharomyces cerevisiae expression system. This strategy of site-directed shuffling mutagenesis of cysteine-to-serine residues aims to identify the cysteine residues that cause protein misfolding in heterologous expression. In the case of a nonglycosylated mutant of the taste-modifying protein miraculin (MCL), which was used here as a model protein, 25% of all constructs obtained from CS shuffling expressed MCL mutant, and serine mutations were found at Cys47 or Cys92, which are involved in the formation of the disulfide bond. This indicates that these residues had the potential to provoke protein misfolding via incorrect disulfide bonding. The CS shuffling can be performed using a small library and within one week, and is an effective screening strategy of soluble protein expression.  相似文献   
143.
Most Blastocystis hominis isolates from humans are believed to be potentially zoonotic. This is because B. hominis isolates found in a variety of other host species have been found to have identical or relatively similar genotypes to those found in human isolates. However, the transmission of human B. hominis isolates to other animals has not been confirmed experimentally. In this study, the infectivity associated with several unique human Blastocystis genotypes (subtypes 2, 3, 4 and 7) was therefore investigated by infecting chickens and rats with two isolates of each subtype experimentally. The results showed that one isolate of subtype 4 and one isolate of subtype 7 was capable of infecting both chickens and rats, while two isolates of subtype 2, another isolate of subtype 4, and another isolate of subtype 7 could only infect chickens. Conversely, two isolates of subtype 3 failed to infect either of the animals. These results confirmed that several genotypes from human isolates could infect chickens and/or rats, indicating that chickens and rats are suitable experimental animal models for studying the zoonotic potential of human Blastocystis isolates.  相似文献   
144.
Nishida T  Orikasa Y  Ito Y  Yu R  Yamada A  Watanabe K  Okuyama H 《FEBS letters》2006,580(11):2731-2735
The colony-forming ability of Escherichia coli genetically engineered to produce eicosapentaenoic acid (EPA) grown in 3mM hydrogen peroxide (H(2)O(2)) was similar to that of untreated cells. It was rapidly lost in the absence of EPA. H(2)O(2)-induced protein carbonylation was enhanced in cells lacking EPA. The fatty acid composition of the transformants was unaffected by H(2)O(2) treatment, but the amount of fatty acids decreased in cultures of cells lacking EPA and increased in cultures of cells producing EPA, suggesting that cellular EPA is stable in the presence of H(2)O(2) in vivo and may protect cells directly against oxidative damage. We discuss the possible role of EPA in partially blocking the penetration of H(2)O(2) into cells through membranes containing EPA.  相似文献   
145.
Production of d-lactic acid from rice bran, one of the most abundant agricultural by-products in Japan, is studied. Lactobacillus delbrueckii subsp. delbrueckii IFO 3202 and defatted rice bran powder after squeezing rice oil were used for the production. Since the rice bran contains polysaccharides as starch and cellulose, we coupled saccharification with amylase and cellulase to lactic acid fermentation. The indigenous bacteria in the rice bran produced racemic lactic acid in the saccharification at pH 6.0-6.8. Thus the pH was controlled at 5.0 to suppress the growth of the indigenous bacteria. L. delbrueckii IFO 3202 produced 28 kgm(-3) lactic acid from 100 kgm(-3) rice bran after 36 h at 37 degrees C. The yield based on the amount of sugars soluble after 36-h hydrolysis of the bran by amylase and cellulase (36 kgm(-3) from 100 kgm(-3) of the bran) was 78%. The optical purity of produced d-lactic acid was 95% e.e.  相似文献   
146.
In this paper, we executed genome mapping and comparative mapping analyses for cvd and hob, autosomal recessive mutations with cerebellar vermis defect and cerebellar dysplasia in the rat. For the linkage analysis, we produced three sets of backcross progeny, (ACI x CVD)F(1) and (F344 x CVD)F(1) females crossed to a cvd homozygous male rat, and (HOB x WKY)F(1) males crossed to hob homozygous female rats. Analysis of the segregation patterns of simple sequence length polymorphism (SSLP) markers scanning the whole rat genome allowed the mapping of these autosomal recessive mutations to rat Chromosome (Chr) 2. The most likely gene order is D2Mgh12 - D2Rat86 - D2Mit15 - D2Rat185 - cvd - D2Rat66 - D2Mgh13, and D2Mit18 - Fga -D2Mit14 - D2Rat16 - hob - D2Mgh13. Crossing test between a proven cvd heterozygous and a hob heterozygous rats demonstrated their allelism. Furthermore, comparative mapping indicated the cvd locus corresponds to mouse chromosome 3 and a strong candidate gene Unc5h3, a causative gene for the rostral cerebellar malformation mouse, was implicated.  相似文献   
147.
Selenocysteine (Sec) is co-translationally incorporated into selenoproteins at a reprogrammed UGA codon. In mammals, this requires a dedicated machinery comprising a stem-loop structure in the 3′ UTR RNA (the SECIS element) and the specific SECIS Binding Protein 2. In this report, disorder-prediction methods and several biophysical techniques showed that ca. 70% of the SBP2 sequence is disordered, whereas the RNA binding domain appears to be folded and functional. These results are consistent with a recent report on the role of the Hsp90 chaperone for the folding of SBP2 and other functionally unrelated proteins bearing an RNA binding domain homologous to SBP2.  相似文献   
148.
A sensitive thymocyte co-stimulator assay of IL-1 using a beta-D-galactoside specific lectin (allo A) obtained from the beetle (Allomyrina dichotoma) is reported here. Allo A stimulated [3H]thymidine uptake of mouse thymocytes in the presence of IL-1. The allo A assay was more sensitive than the PHA or PNA- thymocyte assay, especially at low doses of IL-1. Optimal conditions for the allo A assay were as follows: allo A, 2.5-5.0 micrograms/ml; whole thymocytes, 0.5-1.0 x 10(6) cells/well; incubation time, 72-96 hr. The assay is sensitive and convenient and can easily be performed in any laboratory.  相似文献   
149.
Herpes simplex virus type 2 (HSV-2) induces acute local infection followed by latent infection in the nervous system and often leads to the development of lethal encephalitis in immunocompromised hosts. The mechanisms of immune protection against lethal HSV-2 infection, however, have not been clarified. In this study, we examined the roles of Fas-Fas ligand (FasL) signaling in lethal infection with HSV-2 by using mice with mutated Fas (lpr) or FasL (gld) in C57BL/6 background. Both lpr and gld mice exhibited higher mortality than wild-type (WT) C57BL/6 mice after infection with virulent HSV-2 strain 186 and showed significantly increased viral titers in the spinal cord compared with WT mice 9 days after infection, just before the mice started to die. There were no differences in the numbers of CD4+ and CD8+ T cells infiltrated in the spinal cord or in the levels of HSV-2-specific gamma interferon produced by those cells in a comparison of lpr and WT mice 9 days after infection. Adoptive transfer studies demonstrated that CD4+ T cells from WT mice protected gld mice from lethal infection by HSV-2. Furthermore, CD4+ T cells infiltrated in the spinal cord of HSV-2-infected WT mice expressed functional FasL that induced apoptosis of Fas-expressing target cells in vitro. These results suggest that FasL-mediated cytotoxic activity of CD4+ T cells plays an important role in host defense against lethal infection with HSV-2.Fas-Fas ligand (FasL) signaling-induced apoptotic cell death has pleiotropic roles in T-cell-mediated host defense mechanisms. First, Fas and FasL are expressed on activated T cells and thereby limit their number by inducing suicide or fratricide. It is generally accepted that Fas-mediated activation-induced cell death plays a predominant role during chronic infection, whereas starvation-induced cell death mediated by the proapoptotic BH3-only subgroup of the Bcl-2 protein family is the main mechanism for T-cell death during termination of immune responses in acute infection (30). Fas-FasL signaling might also play a role in T-cell development, as suggested by an accumulation of T-cell receptor αβ-positive (TCR αβ+) CD4 CD8 T cells expressing B220 in lymphoid organs of mice with mutated Fas (lpr) or FasL (gld) although the origin and functions of such double-negative T cells are still a matter of debate (21). Lastly, Fas-FasL interaction can be directly involved in host defense by inducing apoptosis of infected cells to facilitate pathogen clearance (23). Therefore, the roles of Fas-FasL signaling in immune responses for host defense might vary depending on the pathogen.Herpes simplex virus type 2 (HSV-2) is an alphaherpesvirus that causes genital herpes, the most common viral sexually transmitted disease (29). After initial infection in the vaginal epithelium, HSV-2 invades local nerve termini, travels via retrograde axonal transport to neuronal cell bodies in sensory ganglia, and establishes latent infection (13). However, especially in neonates and immunocompromised hosts, HSV-2 can cause lethal central nervous system (CNS) infection, which indicates the importance of immune systems in limiting the pathogenicity of HSV-2. Immune responses against HSV-2 have been studied in various murine models using different strains of virus and routes of inoculation, with or without vaccination with an attenuated strain of HSV-2. In such vaccination models, CD4+ T cells producing gamma interferon (IFN-γ) predominantly conferred protection against challenge with a virulent strain of HSV-2 (11, 19), whereas various subsets of lymphocytes, including NK cells, NK T cells, and TCR γδ T cells as well as CD4+ T cells were reported to be involved in host defense against primary infection with virulent HSV-2 (3, 15, 24), in which IFN-γ also played an important role (9). Fas-FasL signaling was shown to be dispensable for the clearance of an attenuated strain of HSV-2, which lacks thymidine kinase and causes only transient mild vaginal pathologies but not neurologic diseases (6, 16). Similarly Fas-mediated apoptosis was not involved in the vaccination effect of the attenuated HSV-2 (11). However, the roles of Fas-FasL signaling in host defense against a virulent strain of HSV-2 have not been clarified.In this study, we examined the roles of Fas-FasL signaling in a murine model of HSV-2 infection by using a highly virulent HSV-2 strain 186 with lpr and gld mice. We found that FasL-Fas signaling plays an important role in host defense against lethal HSV-2 infection.  相似文献   
150.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号