首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2902篇
  免费   196篇
  国内免费   2篇
  3100篇
  2023年   5篇
  2022年   13篇
  2021年   35篇
  2020年   25篇
  2019年   32篇
  2018年   35篇
  2017年   29篇
  2016年   63篇
  2015年   118篇
  2014年   108篇
  2013年   166篇
  2012年   218篇
  2011年   192篇
  2010年   123篇
  2009年   139篇
  2008年   215篇
  2007年   229篇
  2006年   218篇
  2005年   232篇
  2004年   217篇
  2003年   180篇
  2002年   162篇
  2001年   19篇
  2000年   9篇
  1999年   30篇
  1998年   25篇
  1997年   31篇
  1996年   22篇
  1995年   23篇
  1994年   21篇
  1993年   14篇
  1992年   21篇
  1991年   11篇
  1990年   13篇
  1989年   13篇
  1988年   11篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1978年   6篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1968年   2篇
排序方式: 共有3100条查询结果,搜索用时 0 毫秒
81.
Abnormal aggregation of misfolded proteins and their deposition as inclusion bodies in the brain have been implicated as a common molecular pathogenesis of neurodegenerative diseases including Alzheimer, Parkinson, and the polyglutamine (poly(Q)) diseases, which are collectively called the conformational diseases. The poly(Q) diseases, including Huntington disease and various types of spinocerebellar ataxia, are caused by abnormal expansions of the poly(Q) stretch within disease-causing proteins, which triggers the disease-causing proteins to aggregate into insoluble beta-sheet-rich amyloid fibrils. Although oligomeric structures formed in vitro are believed to be more toxic than mature amyloid fibrils in these diseases, the existence of oligomers in vivo has remained controversial. To explore oligomer formation in cells, we employed fluorescence correlation spectroscopy (FCS), which is a highly sensitive technique for investigating the dynamics of fluorescent molecules in solution. Here we demonstrate direct evidence for oligomer formation of poly(Q)-green fluorescent protein (GFP) fusion proteins expressed in cultured cells, by showing a time-dependent increase in their diffusion time and particle size by FCS. We show that the poly(Q)-binding peptide QBP1 inhibits poly(Q)-GFP oligomer formation, whereas Congo red only inhibits the growth of oligomers, but not the initial formation of the poly(Q)-GFP oligomers, suggesting that FCS is capable of identifying poly(Q) oligomer inhibitors. We therefore conclude that FCS is a useful technique to monitor the oligomerization of disease-causing proteins in cells as well as its inhibition in the conformational diseases.  相似文献   
82.
83.
We investigated the mechanism underlying the perception of extracellular changes in osmotic pressure in Vallisneria gigantea Graebner and transgenic Arabidopsis thaliana (L.) Heynh. expressing cytoplasmic aequorin. Hypertonic and hypotonic treatments of A. thaliana leaves each rapidly induced a Ca2+ transient. Both responses were essentially dependent on the presence of extracellular Ca2+ and were sensitive to Gd3+ a potential blocker of stretch-activated Ca2+ channels. Immediately after plasmolysis caused by hypertonic treatment and subsequent deplasmolysis caused by hypotonic treatment, the cells did not respond to a second hypertonic treatment and exhibited an impaired adhesion of the plasma membrane (PM) to the cell wall (CW). Recovery of the responsiveness required about 6 h. By contrast, no refractory phenomenon was observed in response to hypotonic treatment. Pretreatment with cellulase completely inhibited the Ca2+ transient induced by hypertonic treatment, but it did not affect the response to hypotonic treatment. V. gigantea mesophyll cells pretreated with cellulase exhibited an impaired adhesion of the PM to the CW. The leaf cells of multicellular plants can respond to both hypertonic and hypotonic treatments through the stretch-activated Ca2+ channels, whereas cellulase-sensitive adhesion of the PM to the CW is involved only in the response to hypertonic treatment.  相似文献   
84.
Eicosapentaenoic acid (EPA) is a member of the family of n-3 polyunsaturated fatty acids (PUFAs) that are clinically used to treat hypertriglyceridemia. The triglyceride (TG) lowering effect is likely due to an alteration in lipid metabolism in the liver, but details have not been fully elucidated. To assess the effects of EPA on hepatic TG metabolism, mice were fed a high-fat and high-sucrose diet (HFHSD) for 2 weeks and were given highly purified EPA ethyl ester (EPA-E) daily by gavage. The HFHSD diet increased the hepatic TG content and the composition of monounsaturated fatty acids (MUFAs). EPA significantly suppressed the hepatic TG content that was increased by the HFHSD diet. EPA also altered the composition of fatty acids by lowering the MUFAs C16:1 and C18:1 and increasing n-3 PUFAs, including EPA and docosahexaenoic acid (DHA). Linear regression analysis revealed that hepatic TG content was significantly correlated with the ratios of C16:1/C16:0, C18:1/C18:0, and MUFA/n-3 PUFA, but was not correlated with the n-6/n-3 PUFA ratio. EPA also decreased the hepatic mRNA expression and nuclear protein level of sterol regulatory element binding protein-1c (SREBP-1c). This was reflected in the levels of lipogenic genes, such as acetyl-CoA carboxylase α (ACCα), fatty acid synthase, stearoyl-CoA desaturase 1 (SCD1), and glycerol-3-phosphate acyltransferase (GPAT), which are regulated by SREBP-1c. In conclusion, oral administration of EPA-E ameliorates hepatic fat accumulation by suppressing TG synthesis enzymes regulated by SREBP-1 and decreases hepatic MUFAs accumulation by SCD1.  相似文献   
85.
86.
87.
88.
betaC-S Lyase catalyzes the alpha,beta-elimination of L-cysteine to hydrogen sulfide, which is one of the main causes of oral malodor and is highly toxic to mammalian cells. We evaluated the capacity of six species of oral streptococci to produce hydrogen sulfide. The crude enzyme extract from Streptococcus anginosus had the greatest capacity. However, comparative analysis of amino acid sequences did not detect any meaningful differences in the S. anginosus betaC-S lyase. The capacity of S. anginosus purified betaC-S lyase to degrade L-cysteine was also extremely high, while its capacity to degrade L-cystathionine was unremarkable. These findings suggest that the extremely high capacity of S. anginosus to produce hydrogen sulfide is due to the unique characteristic of betaC-S lyase from that organism.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号