首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5416篇
  免费   300篇
  国内免费   4篇
  2024年   10篇
  2023年   17篇
  2022年   71篇
  2021年   108篇
  2020年   60篇
  2019年   93篇
  2018年   145篇
  2017年   98篇
  2016年   178篇
  2015年   260篇
  2014年   286篇
  2013年   396篇
  2012年   450篇
  2011年   423篇
  2010年   279篇
  2009年   273篇
  2008年   369篇
  2007年   356篇
  2006年   273篇
  2005年   254篇
  2004年   275篇
  2003年   230篇
  2002年   196篇
  2001年   91篇
  2000年   99篇
  1999年   69篇
  1998年   46篇
  1997年   37篇
  1996年   24篇
  1995年   28篇
  1994年   14篇
  1993年   21篇
  1992年   23篇
  1991年   30篇
  1990年   18篇
  1989年   20篇
  1988年   18篇
  1987年   4篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1978年   5篇
  1976年   4篇
  1975年   4篇
  1972年   3篇
  1969年   3篇
  1967年   3篇
排序方式: 共有5720条查询结果,搜索用时 21 毫秒
941.
Long-term depression (LTD) is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR)–dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs) via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.  相似文献   
942.
Dibucaine, a local anesthetic, is known to induce flagellar excision in Chlamydomonas reinhardtii. Herein, we investigate whether other local anesthetics have similar effects. Tetracaine, bupivacaine, procaine, and lidocaine also caused flagellar excision, although their potencies were lower than that of dibucaine. Bupivacaine, procaine, and lidocaine induced a morphological change in flagella from a rod‐like shape to a disk‐like shape before flagellar excision. Except for lidocaine, these local anesthetics caused cell‐wall shedding in addition to flagellar excision. The anesthetics in order of their median effective concentration (1‐h EC50) for flagellar excision are as follows: dibucaine (1.37 × 10?5 M) < tetracaine (3.16 × 10?5 M) < bupivacaine (4.25 × 10?4 M) < procaine (2.02 × 10?3 M) < lidocaine (3.61 × 10?3 M). In all cases, Ca2+ depletion from the solution inhibited flagellar excision. However, Ca2+‐channel blockers, IP3 receptor antagonists, and inhibitors of phospholipase C did not prevent excision. We suggest that the local anesthetics induce flagellar excision by increasing the fluidity of the flagellar/cell membrane, thereby allowing extracellular Ca2+ to flow into the cell and cause flagellar excision.  相似文献   
943.
944.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   
945.
Alpha1,6-fucosyltransferase (Fut8) plays important roles inphysiological and pathological conditions. Fut8-deficient (Fut8–/–)mice exhibit growth retardation, earlier postnatal death, andemphysema-like phenotype. To investigate the underlying molecularmechanism by which growth retardation occurs, we examined themRNA expression levels of Fut8–/– embryos (18.5days postcoitum [dpc]) using a cDNA microarray. The DNA microarrayand real-time polymerase chain reaction (PCR) analysis showedthat a group of genes, including trypsinogens 4, 7, 8, 11, 16,and 20, were down-regulated in Fut8–/– embryos.Consistently, the expression of trypsinogen proteins was foundto be lower in Fut8–/– mice in the duodenum, smallintestine, and pancreas. Trypsin, an active form of trypsinogen,regulates cell growth through a G-protein-coupled receptor,the proteinase-activated receptor 2 (PAR-2). In a cell culturesystem, a Fut8 knockdown mouse pancreatic acinar cell carcinoma,TGP49-Fut8-KDs, showed decreased growth rate, similar to thatseen in Fut8–/– mice, and the decreased growth ratewas rescued by the application of the PAR-2-activating peptide(SLIGRL-NH2). Moreover, epidermal growth factor (EGF)-inducedreceptor phosphorylation was attenuated in TGP49-Fut8-KDs, whichwas highly associated with a reduction of trypsinogens mRNAlevels. The addition of exogenous EGF recovered c-fos, c-jun,and trypsinogen mRNA expression in TGP49-Fut8-KDs. Again, theEGF-induced up-regulation of c-fos and c-jun mRNA expressionwas significantly blocked by the protein kinase C (PKC) inhibitor.Our findings clearly demonstrate a relationship between Fut8and the regulation of EGF receptor (EGFR)-trypsin-PAR-2 pathwayin controlling cell growth and that the EGFR-trypsin-PAR-2 pathwayis suppressed in TGP49-Fut8-KDs as well as in Fut8–/–mice.  相似文献   
946.
The radioresistance of Anisakis simplex third-stage larvae and the possible role of sublethal radiation on superoxide dismutase (SOD) were investigated. Larvae were isolated from the viscera of the sea eel Anago anago; irradiated with 10, 100, 200, 500, or 1,000 Gy; and then given orally to rats. Worms were recovered at 16 hr postinoculation. Most larvae were found to have invaded the gastric wall, omentum, and abdominal cavity, suggesting that their viability and infectivity were not controlled by irradiation with the doses used. To determine the relationship between SOD activities in parasites and their radiosensitivities, the larvae of A. simplex and the metacercariae of Neodiplostomum seoulense (a radiosensitive control) were irradiated with 0, 30, 100, or 500 Gy, and parasite SOD levels were measured. In nonirradiated A. simplex larvae, the average SOD level was 38.9 U/mg, and this increased to 51.3 U/mg at 500 Gy. However, at all radiation doses applied, SOD activities of N. seoulense metacercariae were significantly (P < 0.05) lower than those of A. simplex larvae. Our results demonstrate that A. simplex third-stage larvae are radioresistant, and suggest that SOD plays a role in this radioresistance.  相似文献   
947.
Urokinase plasminogen activator receptor (uPAR) plays a major role in cancer-invasion and metastasis and uPAR expression is correlated with a poor prognosis in various cancer types. Moreover, the expression of uPAR is increased under hypoxic conditions. Nitric oxide (NO) and its metabolites produced by inducible nitric oxide synthase (iNOS) are important products ofhypoxic stress, and NO may activate or modulate extracellular signal regulated kinase (ERK). Here, we evaluated uPA, uPAR, and activated ERK levels under hypoxic conditions, and the modulatory effects of iNOS and NO in the MDA-MB-231 human breast cancer cell line. Cells were incubated in a hypoxic or normoxic incubator and treated with PD98059 (a MEK 1/2 inhibitor, which abrogates ERK phosphorylation) and aminoguanidine (a selective iNOS inhibitor), uPAR expression, ERK phosphorylation, and uPA activity were found to be increased under hypoxic conditions. Moreover, when cells were treated with PD98059 under hypoxic conditions, uPAR was downregulated, whereas aminoguanidine markedly increased ERK phosphorylation in a dose dependent manner. Furthermore, aminoguanidine increased uPAR expression and prevented the inhibition of uPAR expression by PD98059. These results demonstrated that uPAR is induced by hypoxia and that increased uPAR expression is mediated by ERK phosphorylation, which in turn is modulated by iNOS/NO in MDA-MB-231 cells. We conclude that iNOS/NO downregulates the expression of uPAR under hypoxic conditions via ERK pathway modulation.  相似文献   
948.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   
949.
The ocular surface is always attacked by oxidative stress, and cornea epithelial cells are supposed to have their own recovery system against oxidative stress. Therefore we hypothesized that tears supply key molecules for preventing oxidative stress in cornea. The potential target key molecule we focused is selenoprotein P (SeP). SeP is a carrier of selenium, which is an essential trace element for many animals, for oxidative stress metabolism in the organism, and was extremely expressed in lacrimal gland. An experiment was performed with SeP eye drops in a rat dry eye model, prepared by removing the lacrimal glands. The anticipated improvement in corneal dry eye index and the suppression of oxidative stress markers were observed in SeP eye drop group. Furthermore, the concentration of SeP was significantly higher in dry eye patients compared with normal volunteers. Collectively, we concluded that tear SeP is a key molecule to protect the ocular surface cells against environmental oxidative stress.  相似文献   
950.

Background

Leber''s hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies.

Methodology/Principal Findings

We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects.

Conclusions/Significance

The present study reports successful manifestation of LHON-like symptoms in rats and demonstrates the potential of the NDI1 gene therapy on mitochondrial optic neuropathies. Our results indicate a window of opportunity for the gene therapy to be applied successfully after the onset of the disease symptoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号