首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3038篇
  免费   170篇
  3208篇
  2023年   7篇
  2022年   26篇
  2021年   53篇
  2020年   19篇
  2019年   34篇
  2018年   43篇
  2017年   41篇
  2016年   53篇
  2015年   95篇
  2014年   99篇
  2013年   190篇
  2012年   191篇
  2011年   201篇
  2010年   130篇
  2009年   120篇
  2008年   189篇
  2007年   203篇
  2006年   183篇
  2005年   157篇
  2004年   210篇
  2003年   166篇
  2002年   155篇
  2001年   59篇
  2000年   41篇
  1999年   49篇
  1998年   40篇
  1997年   35篇
  1996年   29篇
  1995年   40篇
  1994年   18篇
  1993年   27篇
  1992年   36篇
  1991年   42篇
  1990年   22篇
  1989年   23篇
  1988年   31篇
  1987年   13篇
  1986年   10篇
  1985年   15篇
  1984年   13篇
  1983年   14篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1978年   4篇
  1977年   10篇
  1976年   10篇
  1975年   4篇
  1973年   4篇
  1967年   3篇
排序方式: 共有3208条查询结果,搜索用时 0 毫秒
51.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   
52.
Maximum growth for Rhizopus sp. A-11 was obtained at a zinc ion concentration of 0.7 ppm in a liquid medium. Glucoamylase (GA, EC 3.2.1.3) production in Rhizopus sp. A-11 was maximized at 710 U/ml, at the presence of 75 ppm for calcium and 0.7 ppm of zinc ions in liquid medium. Zinc ion is known as an essential biometal for Rhizopus growth; however, growth was inhibited by the zinc ion concentration, not maximized. Although calcium ion was not necessary to Rhizopus growth, GA production using Rhizopus sp. A-11 was markedly stimulated by calcium ion concentration over 75 ppm in the liquid medium. The GA productivity of the present liquid culture was about 4.4 times higher than that of the solid state culture, based on the unit starch amount in the liquid and solid media carbon source. The characteristics of the GA produced by the Rhizopus sp. A-11 liquid culture were interesting; that is, almost all the GA produced was classified as raw starch-digesting GA (GA-I). Secreted protein in the culture liquid after 30 h was nearly GA, and had a limited amount of impure protein. As a result, it was found that using a Rhizopus culture in a specified metal-ion regulated medium was an effective method for producing GA. Thus the present culture method was renamed the "metal-ion-regulated liquid culture method".  相似文献   
53.
54.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   
55.
Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.  相似文献   
56.
We obtained a monoclonal antibody (TDM-1) binding to 313-nm UV-irradiated DNA in the presence of acetophenone. The binding of TDM-1 to 254-nm UV-irradiated DNA was not reduced with the subsequent irradiation of 313-nm UV. Furthermore, the treatment of UV-irradiated DNA with photolyase from E. coli and visible light exposure reduced both the antibody binding and the amount of thymine dimers in the DNA. A competitive inhibition assay revealed that the binding of TDM-1 to UV-irradiated DNA was inhibited with photolyase, but not with 64M-1 antibody specific for (6-4)photoproducts. These results suggest that TDM-1 antibody recognizes cyclobutane-type thymine dimers in DNA. Using TDM-1 and 64M-1 antibodies, we differentially measured each type of damage in DNA extracted from UV-irradiated mammalian cells. Repair experiments confirm that thymine dimers are excised from UV-irradiated cellular DNA more slowly than (6-4)photoproducts, and that the excision rates of thymine dimers and (6-4)photoproducts are lower in mouse NIH3T3 cells than in human cells.  相似文献   
57.
Hepatitis C virus (HCV) genotype 1 infections are significantly more difficult to eradicate with PEG-IFN/ribavirin therapy, compared to HCV genotype 2. The aim of this work is to investigate the difference of immunological impairments underlying this phenomenon. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes and CD56+CD3− NK cells from cases of chronic hepatitis C were analyzed and assessed by treatment effect. Two strains of HCV were used to co-incubate with immune cells in vitro. NKG2D expression on peripheral CD56+CD3+ lymphocytes, but not NK cells, was significantly impaired in genotype 1 infection, compared to genotype 2. When peripheral blood mononuclear cells from healthy donors were co-incubated with TNS2J1, a genotype 1b/2a chimera strain, or with JFH1, a genotype 2a strain, genotype-specific decrease of NKG2D on CD56+CD3+ lymphocytes, but not NK cells, was observed. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes significantly correlated with reduction in serum HCV RNA levels from week 0 to week 4, and predicted treatment response. Ex vivo stimulation of peripheral CD56+CD3+ lymphocytes showed NKG2D expression-correlated IFN-γ production. In conclusion, Decreased NKG2D expression on CD56+CD3+ lymphocytes in chronic HCV genotype 1 infection predicts inferior treatment response to PEG-IFN/ribavirin therapy compared to genotype 2.  相似文献   
58.
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.  相似文献   
59.
Ishiwata A  Ohta S  Ito Y 《Carbohydrate research》2006,341(10):1557-1573
It has been shown that certain prokaryotes, such as Campylobacter jejuni, have asparagine (Asn)-linked glycoproteins. However, the structures of their glycans are distinct from those of eukaryotic origin. They consist of a bacillosamine residue linked to Asn, an alpha-(1-->4)-GalpNAc repeat, and a branching beta-Glcp residue. In this paper, we describe a strategy for the stereoselective construction of the alpha-(1-->4)-GalpNAc repeat of a C. jejuni N-glycan, utilizing a pentafluoropropionyl (PFP) group as a temporary protective group of the C-4 OH group of the GalpN donor. The strategy was applied to the synthesis of the hexasaccharide alpha-GalpNAc-(1-->4)-alpha-GalpNAc-(1-->4)-[beta-Glcp-(1-->3)]-alpha-GalpNAc(1-->4)-alpha-GalpNAc-(1-->4)-GalpNAc.  相似文献   
60.
Inheritance of 9 microsatellite loci was examined in 3 families of gynogenetic Pacific abalone Haliotis discus hannai produced by fertilizing eggs with UV-irradiated sperm followed by inhibition of the second meiotic division. The proportion of heterozygous progeny was used to estimate marker-centromere (M-C) distances. All loci conformed to Mendelian segregation in the control crosses when null alleles were accounted for. The absence of paternal alleles confirmed the gynogenetic origin of the offspring and indicated 100% success for 3 families. Estimated recombinant frequencies ranged from 0.10 to 0.60, which is lower than those observed in other gynogenetic diploid animals. The mean recombination frequency was 0.22, corresponding to a fixation index of 0.78 in one generation. This is 3.12 times the increase in homozygosity expected after one generation of sib mating (0.25), suggesting meiotic gynogenesis may be an effective means of rapid inbreeding in the abalone. M-C map distances for the 9 loci varied between 5 and 30 cM under the assumption of complete interference. The information about M-C distances will be useful for future gene mapping in H. discus hannai.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号