全文获取类型
收费全文 | 2820篇 |
免费 | 133篇 |
国内免费 | 2篇 |
专业分类
2955篇 |
出版年
2023年 | 7篇 |
2022年 | 25篇 |
2021年 | 48篇 |
2020年 | 20篇 |
2019年 | 31篇 |
2018年 | 42篇 |
2017年 | 35篇 |
2016年 | 62篇 |
2015年 | 86篇 |
2014年 | 88篇 |
2013年 | 199篇 |
2012年 | 189篇 |
2011年 | 181篇 |
2010年 | 107篇 |
2009年 | 112篇 |
2008年 | 184篇 |
2007年 | 196篇 |
2006年 | 174篇 |
2005年 | 149篇 |
2004年 | 199篇 |
2003年 | 150篇 |
2002年 | 144篇 |
2001年 | 49篇 |
2000年 | 42篇 |
1999年 | 44篇 |
1998年 | 37篇 |
1997年 | 31篇 |
1996年 | 17篇 |
1995年 | 23篇 |
1994年 | 17篇 |
1993年 | 18篇 |
1992年 | 24篇 |
1991年 | 24篇 |
1990年 | 17篇 |
1989年 | 31篇 |
1988年 | 23篇 |
1987年 | 19篇 |
1986年 | 9篇 |
1985年 | 14篇 |
1984年 | 10篇 |
1983年 | 9篇 |
1982年 | 9篇 |
1981年 | 7篇 |
1980年 | 5篇 |
1979年 | 10篇 |
1978年 | 6篇 |
1976年 | 6篇 |
1975年 | 10篇 |
1970年 | 2篇 |
1967年 | 4篇 |
排序方式: 共有2955条查询结果,搜索用时 0 毫秒
11.
12.
Mitsusada Iwasa Tomoki Aihara Kayo Maeda Akihiro Narita Yuichiro Maéda Toshiro Oda 《The Journal of biological chemistry》2012,287(52):43270-43276
Actin plays fundamental roles in a variety of cell functions in eukaryotic cells. The polymerization-depolymerization cycle, between monomeric G-actin and fibrous F-actin, drives essential cell processes. Recently, we proposed the atomic model for the F-actin structure and found that actin was in the twisted form in the monomer and in the untwisted form in the filament. To understand how the polymerization process is regulated (Caspar, D. L. (1991) Curr. Biol. 1, 30–32), we need to know further details about the transition from the twisted to the untwisted form. For this purpose, we focused our attention on the Ala-108–Pro-112 loop, which must play crucial roles in the transition, and analyzed the consequences of the amino acid replacements on the polymerization process. As compared with the wild type, the polymerization of P109A was accelerated in both the nucleation and the elongation steps, and this was attributed to an increase in the frequency factor of the Arrhenius equation. The multiple conformations allowed by the substitution presumably resulted in the effective formation of the collision complex, thus accelerating polymerization. On the other hand, the A108G mutation reduced the rates of both nucleation and elongation due to an increase in the activation energy. In the cases of polymerization acceleration and deceleration, each functional aberration is attributed to a distinct elementary process. The rigidity of the loop, which mediates neither too strong nor too weak interactions between subdomains 1 and 3, might play crucial roles in actin polymerization. 相似文献
13.
Recent studies reveal that the intracellular localization of pyruvate,Pi dikinase (PPDK, EC 2.7.9.1) in mesophyll cells of malic enzyme (ME)-dependent Crassulacean acid metabolism (CAM) plants varies among species, occurring not only in the chloroplasts but also in the cytosol in some species. The facultative CAM plant Kalanchoë blossfeldiana accumulates PPDK in both compartments of the mesophyll cells. In this study, the patterns of accumulation of the chloroplastic and cytosolic PPDKs were investigated for K. blossfeldiana plants with different CAM activities by immunogold labeling and electron microscopy. Greater CAM activity was found in plants grown under drought conditions with short days than under well-watered conditions with long days, and in lower leaves than in higher leaves. There was a trend that plants and leaves with greater CAM activity show denser labeling for PPDK in both the cytosol and chloroplasts. However, the ratio of the density of PPDK labeling in the cytosol to that in the chloroplasts was almost constant (2.4–3.0). Higher labeling for phosphoenolpyruvate carboxylase (EC 4.1.1.31) in the cytosol was also correlated with higher CAM activity but there was almost no difference in the density of labeling for ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in the chloroplasts. These results indicate that the increase in accumulation of cytosolic PPDK is closely associated with the increase of chloroplastic PPDK during enhanced CAM expression. This suggests that both PPDKs are involved in CAM function. 相似文献
14.
Supajatura V Ushio H Wada A Yahiro K Okumura K Ogawa H Hirayama T Ra C 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(6):2603-2607
Mucosal mast cells strategically located at the optimal site interact with invading bacteria. Presence of VacA, the virulent Helicobacter pylori cytotoxin, is correlated with the severity of H. pylori-induced gastritis. To examine the mechanisms of inflammation in H. pylori-induced gastritis, we administered VacA to the mice. Inoculation of VacA resulted in epithelium vacuolization and marked infiltrations of mast cells and mononuclear cells into the mucosal epithelium within 24 h. In an in vitro study using bone marrow-derived mast cells, VacA directly bound and showed a chemotactic activity to the mast cell. In addition, VacA induced bone marrow-derived mast cells to produce proinflammatory cytokines, TNF-alpha, macrophage-inflammatory protein-1alpha, IL-1beta, IL-6, IL-10, and IL-13 in a dose-dependent manner without causing degranulation. The present study suggests that early activation of mast cells by VacA may be the host early response to clear the bacteria and also may contribute to the pathogenesis of H. pylori-induced gastritis. 相似文献
15.
Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kappa B activation induced by phorbol ester 总被引:1,自引:0,他引:1
Muto A Ruland J McAllister-Lucas LM Lucas PC Yamaoka S Chen FF Lin A Mak TW Núñez G Inohara N 《The Journal of biological chemistry》2002,277(35):31871-31876
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma. 相似文献
16.
Momoi A Yoda H Steinbeisser H Fagotto F Kondoh H Kudo A Driever W Furutani-Seiki M 《Mechanisms of development》2003,120(4):477-489
The dorsal ectoderm of vertebrate gastrula is first specified into anterior fate by an activation signal and posteriorized by a graded transforming signal, leading to the formation of forebrain, midbrain, hindbrain and spinal cord along the anteroposterior (A-P) axis. Transplanted non-axial mesoderm rather than axial mesoderm has an ability to transform prospective anterior neural tissue into more posterior fates in zebrafish. Wnt8 is a secreted factor that is expressed in non-axial mesoderm. To investigate whether Wnt8 is the neural posteriorizing factor that acts upon neuroectoderm, we first assigned Frizzled 8c and Frizzled 9 to be functional receptors for Wnt8. We then, transplanted non-axial mesoderm into the embryos in which Wnt8 signaling is cell-autonomously blocked by the dominant-negative form of Wnt8 receptors. Non-axial mesodermal transplants in embryos in which Wnt8 signaling is cell-autonomously blocked induced the posterior neural markers as efficiently as in wild-type embryos, suggesting that Wnt8 signaling is not required in neuroectoderm for posteriorization by non-axial mesoderm. Furthermore, Wnt8 signaling, detected by nuclear localization of beta-catenin, was not activated in the posterior neuroectoderm but confined in marginal non-axial mesoderm. Finally, ubiquitous over-expression of Wnt8 does not expand neural ectoderm of posterior character in the absence of mesoderm or Nodal-dependent co-factors. We thus conclude that other factors from non-axial mesoderm may be required for patterning neuroectoderm along the A-P axis. 相似文献
17.
Hidetatsu Outani Minoru Okada Akihiro Yamashita Kanako Nakagawa Hideki Yoshikawa Noriyuki Tsumaki 《PloS one》2013,8(10)
The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon) cells from human dermal fibroblast (HDF) culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells. 相似文献
18.
19.
Characterization of the carp myosin heavy chain multigene family 总被引:3,自引:0,他引:3
We isolated partial coding sequences for 29 carp myosin heavy chain genes (MyoHCs) and determined the nucleotide sequences around the region encoding the loop 2 of the myosin molecule. The predicted amino acid sequences from the isolated genes all showed very high similarity to those of skeletal and cardiac muscles from higher vertebrates, but not to those of smooth and non-muscle counterparts. Among all clones isolated, carp MyoHC10, MyoHCI-1-3 and MyoHC30 showed exon-nucleotide sequences identical to those of cDNAs encoding the loop 2 region of the 10 degrees C-, intermediate- and 30 degrees C-type fast skeletal isoforms [Hirayama and Watabe, Euro. J. Biochem. 246 (1997) 380-387]. The loop 2 of 28 types of carp MyoHCs was encoded by two exons separated by an intron corresponding to that of the 16th in higher vertebrate MyoHCs, whilst this intron was not found in carp MyoHC30. Although carp MyoHC30 had a gene organization different from those of higher vertebrates and other carp MyoHCs, its predicted amino acid sequence for loop 2 showed the highest homology to those of higher vertebrates among carp MyoHCs. In the 28 carp MyoHCs containing the intron, a combination of different nucleotide sequences for the two resulted in 14 distinct series for the combined coding sequence. These different nucleotide sequences encoded nine distinct amino acid sequences. Phylogenetic analysis for the present loop 2 and light meromyosin previously reported for carp MyoHCs [Imai et al., J. Exp. Biol. 200 (1997) 27-34] revealed that carp MyoHCs have recently diverged and are more closely related to each other than to MyoHCs from other species. 相似文献
20.
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane "rafts" biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 micro, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane. 相似文献