首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1871篇
  免费   134篇
  国内免费   1篇
  2023年   7篇
  2022年   5篇
  2021年   16篇
  2020年   12篇
  2019年   19篇
  2018年   26篇
  2017年   39篇
  2016年   53篇
  2015年   53篇
  2014年   77篇
  2013年   115篇
  2012年   117篇
  2011年   122篇
  2010年   87篇
  2009年   83篇
  2008年   104篇
  2007年   121篇
  2006年   128篇
  2005年   120篇
  2004年   137篇
  2003年   135篇
  2002年   144篇
  2001年   13篇
  2000年   15篇
  1999年   22篇
  1998年   30篇
  1997年   25篇
  1996年   17篇
  1995年   18篇
  1994年   23篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   15篇
  1983年   10篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1966年   1篇
排序方式: 共有2006条查询结果,搜索用时 500 毫秒
81.
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.  相似文献   
82.
X-linked dominant chondrodysplasia punctata (CDPX2) is a skeletal dysplasia characterized by stippled epiphyses, cataracts, alopecia and skin lesions, including ichthyosis. CDPX2 exhibits a number of perplexing clinical features, such as intra- and inter-familial variation, anticipation, incomplete penetrance and possible gonadal and somatic mosaicism. Recently, mutations in the gene encoding Delta8,Delta7 sterol isomerase/emopamil-binding protein (EBP) have been identified in CDPX2. To better understand the genetics of CDPX2, we examined the entire EBP gene by direct sequencing in four CDPX2 patients. We found EBP mutations in all four patients, including three novel mutations: IVS3+1G>A, Y165C and W82C. Surprisingly, a known mutation (R147H) was identified in a patient and her clinically unaffected mother. Expression analysis revealed the mutant allele was predominantly expressed in the patient, while both alleles were expressed in the mother. Methylation analysis revealed that the wild-type allele was predominantly inactivated in the patient, while the mutated allele was predominantly inactivated in her mother. Thus, differences in expression of the mutated allele caused by skewed X-chromosome inactivation produced the diverse phenotypes within the family. Our findings could explain some of the perplexing features of CDPX2. The possibility that an apparently normal parent is a carrier should be considered when examining seemingly sporadic cases and providing genetic counseling to CDPX2 families.  相似文献   
83.
The torque-speed relationship of the Na(+)-driven flagellar motor of Vibrio alginolyticus was investigated. The rotation rate of the motor was measured by following the position of a bead, attached to a flagellar filament, using optical nanometry. In the presence of 50mM NaCl, the generated torque was relatively constant ( approximately 3800pNnm) at lower speeds (speeds up to approximately 300Hz) and then decreased steeply, similar to the H(+)-driven flagellar motor of Escherichia coli. When the external NaCl concentration was varied, the generated torque of the flagellar motor was changed over a wide range of speeds. This result could be reproduced using a simple kinetic model, which takes into consideration the association and dissociation of Na(+) onto the motor. These results imply that for a complete understanding of the mechanism of flagellar rotation it is essential to consider both the electrochemical gradient and the absolute concentration of the coupling ion.  相似文献   
84.
We previously showed that skin-homing CD4 T cells in peripheral blood can be subdivided into three populations on the basis of the expression pattern of the cutaneous lymphocyte Ag (CLA) and fucosyltransferase VII (FucT-VII): FucT-VII(+)CLA(-), FucT-VII(+)CLA(+), and FucT-VII(-)CLA(+). In view of the known late appearance of CLA during T cell differentiation, T cells programmed to attain skin-homing properties may start to generate E-selectin-binding epitopes at early stages of differentiation before induction of CLA expression. To this end, the in vitro differentiation from naive to CLA(+) memory T cells was followed after activation with anti-CD3 mAb. Here we demonstrate that naive skin-homing CD4 T cell precursors undergo a linear differentiation process from the FucT-VII(+)CLA(-) phenotype to the FucT-VII(+)CLA(+) phenotype and eventually to the FucT-VII(-)CLA(+) phenotype. The appearance of the FucT-VII(+)CLA(-) subset coincided with or could be immediately followed by the generation of E-selectin binding epitopes, and even after E-selectin-binding epitopes were no longer detectable, CLA remained expressed for prolonged periods of time, suggesting that induction of functional E-selectin ligands depends primarily on the expression of FucT-VII, but not CLA. Immunofluorescence and confocal microscopy studies of these T cells confirm that most E-selectin ligands were found independently of CLA expression.  相似文献   
85.
Endoplasmic streaming of characean cells of Nitella or Chara is known to be in the range 30-100 microm/second. The Chara myosin extracted from the cells and fixed onto a glass surface was found to move muscle actin filaments at a velocity of 60 microm/second. This is ten times faster than that of skeletal muscle myosin (myosin II). In this study, the displacement caused by single Chara myosin molecules was measured using optical trapping nanometry. The step size of Chara myosin was approximately 19nm. This step size is longer than that of skeletal muscle myosin but shorter than that of myosin V. The dwell time of the steps was relatively long, and this most likely resulted from two rate-limiting steps, the dissociation of ADP and the binding of ATP. The rate of ADP release from Chara myosin after the completion of the force-generation step was similar to that of myosin V, but was considerably slower than that of skeletal muscle myosin. The 19nm step size and the dwell time obtained could not explain the fast movement. The fast movement could be explained by the load-dependent release of ADP. As the load imposed on the myosin decreased, the rate of ADP release increased. We propose that the interaction of Chara myosin with an actin filament resulted in a negative load being imposed on other myosin molecules interacting with the same actin filament. This resulted in an accelerated release of ADP and the fast sliding movement.  相似文献   
86.
Very little is known about the contribution of a low affinity neurotrophin receptor, p75, to neurotransmitter release. Here we show that nerve growth factor (NGF) induced a rapid release of glutamate and an increase of Ca2+ in cerebellar neurons through a p75-dependent pathway. The NGF-induced release occurred even in the presence of the Trk inhibitor K252a. The release caused by NGF but not brain-derived neurotrophic factor was enhanced in neurons overexpressing p75. Further, after transfection of p75-small interfering RNA, which down-regulated the endogenous p75 expression, the NGF-induced release was inhibited, suggesting that the NGF-induced glutamate release was through p75. We found that the NGF-increased Ca2+ was derived from the ryanodine-sensitive Ca2+ receptor and that the NGF-increased Ca2+ was essential for the NGF-induced glutamate release. Furthermore, scyphostatin, a sphingomyelinase inhibitor, blocked the NGF-dependent Ca2+ increase and glutamate release, suggesting that a ceramide produced by sphingomyelinase was required for the NGF-stimulated Ca2+ increase and glutamate release. This action of NGF only occurred in developing neurons whereas the brain-derived neurotrophic factor-mediated Ca2+ increase and glutamate release was observed at the mature neuronal stage. Thus, we demonstrate that NGF-mediated neurotransmitter release via the p75-dependent pathway has an important role in developing neurons.  相似文献   
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号