首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   148篇
  国内免费   1篇
  2187篇
  2023年   7篇
  2022年   5篇
  2021年   16篇
  2020年   13篇
  2019年   19篇
  2018年   26篇
  2017年   38篇
  2016年   55篇
  2015年   62篇
  2014年   86篇
  2013年   125篇
  2012年   124篇
  2011年   131篇
  2010年   87篇
  2009年   85篇
  2008年   109篇
  2007年   123篇
  2006年   133篇
  2005年   124篇
  2004年   155篇
  2003年   145篇
  2002年   154篇
  2001年   24篇
  2000年   23篇
  1999年   27篇
  1998年   37篇
  1997年   26篇
  1996年   18篇
  1995年   20篇
  1994年   23篇
  1993年   9篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   15篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   15篇
  1983年   10篇
  1982年   8篇
  1981年   11篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1970年   2篇
排序方式: 共有2187条查询结果,搜索用时 0 毫秒
101.
102.
103.
Interaction of advanced glycation end products (AGE) with AGE receptors induces several cellular phenomena potentially relating to diabetic complications. We here show that AGE-modified bovine serum albumin (BSA) is endocytosed by adipocytes via CD36. Upon differentiation, 3T3-L1 and human subcutaneous adipose cells showed marked increases in endocytic uptake and subsequent degradation of [(125)I]AGE-BSA, which were inhibited effectively by the anti-CD36 antibody. Ligand specificity of CD36 for modified BSAs was compared with that of LOX-1 and scavenger receptor class A. Effect of fucoidan on [(125)I]AGE-BSA binding showed a sharp contrast to that on [(125)I]-oxidized low density lipoprotein. These results implicate that CD36-mediated interaction of AGE-modified proteins with adipocytes might play a pathological role in obesity or insulin-resistance.  相似文献   
104.
Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase. Although previous studies suggested that the eukaryotic CLK-1/Coq7 family is a hydroxylase of demethoxyubiquinone, there was no direct evidence to show the enzymatic activity of the eukaryotic CLK-1/Coq7 family. Here we show that the plasmid encoding C. elegans CLK-1 supported aerobic respiration on a non-fermentable carbon source of E. coli ubiF mutant strain and rescued the ability to synthesize ubiquinone, suggesting that the eukaryotic CLK-1/Coq7p family could function as bacterial UbiF.  相似文献   
105.
PACE4 is a member of the mammalian subtilisin-like proprotein convertase (SPC) family, which contribute to the activation of transforming growth factor (TGF) beta family proteins. We previously reported that PACE4 is highly expressed in syncytiotrophoblasts of human placenta [Tsuji et al. (2003) BIOCHIM: Biophys. Acta 1645, 95-104]. In this study, the regulatory mechanism for PACE4 expression in placenta was analyzed using a human placental choriocarcinoma cell line, BeWo cells. Promoter analysis indicated that an E-box cluster (E4-E9) in the 5'-flanking region of the PACE4 gene acts as a negative regulatory element. The binding of human achaete-scute homologue 2 (Hash-2) to the E-box cluster was shown by gel mobility-shift assay. The overexpression of Hash-2 caused a marked decrease in PACE4 gene expression. When BeWo cells were grown under low oxygen (2%) conditions, the expression of Hash-2 decreased, while that of PACE4 increased. In both cases, other SPCs, such as furin, PC5/6, and PC7/8, were not affected. Further, PACE4 expression was found to be developmentally regulated in rat placenta. By in situ hybridization, Mash-2 (mammalian achaete-scute homologue 2) mRNA was found to be expressed in the spongiotrophoblast layer where PACE4 was not expressed. In contrast, the PACE4 mRNA was expressed mainly in the labyrinthine layer where Mash-2 was not detected. These results suggest that PACE4 expression is down-regulated by Hash-2/Mash-2 in both human and rat placenta and that many bioactive proteins might be regulated by PACE4 activity.  相似文献   
106.
107.
108.
109.
110.
Plant cell wall degradation by Clostridium cellulovorans requires the cooperative activity of its cellulases and hemicellulases. To characterize the alpha-L-arabinosidases that are involved in hemicellulose degradation, we screened the C. cellulovorans genomic library for clones with alpha-L-arabinofuranosidase or alpha-L-arabinopyranosidase activity, and two clones utilizing different substrates were isolated. The genes from the two clones, arfA and bgaA, encoded proteins of 493 and 659 amino acids with molecular weights of 55,731 and 76,414, respectively, and were located on neighboring loci. The amino acid sequences for ArfA and BgaA were related to alpha-L-arabinofuranosidase and beta-galactosidase, respectively, which are classified as family 51 and family 42 glycosyl hydrolases, respectively. Recombinant ArfA (rArfA) had high activity for p-nitrophenyl alpha-L-arabinofuranoside, arabinoxylan, and arabinan but not for p-nitrophenyl alpha-L-arabinopyranoside. On the other hand, recombinant BgaA (rBgaA) hydrolyzed not only p-nitrophenyl alpha-L-arabinopyranoside but also p-nitrophenyl beta-D-galactopyranoside. However, when the affinities of rBgaA for p-nitrophenyl alpha-L-arabinopyranoside and p-nitrophenyl beta-D-galactopyranoside were compared, the K(m) values were 1.51 and 6.06 mM, respectively, suggesting that BgaA possessed higher affinity for alpha-L-arabinopyranose residues than for beta-D-galactopyranoside residues and possessed a novel enzymatic property for a family 42 beta-galactosidase. Activity staining analyses revealed that ArfA and BgaA were located exclusively in the noncellulosomal fraction. When rArfA and rBgaA were incubated with beta-1,4-xylanase A (XynA), a cellulosomal enzyme from C. cellulovorans, on plant cell wall polymers, the plant cell wall-degrading activity was synergistically increased compared with that observed with XynA alone. These results indicate that, to obtain effective plant cell wall degradation, there is synergy between noncellulosomal and cellulosomal subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号