首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   14篇
  343篇
  2022年   1篇
  2021年   10篇
  2020年   6篇
  2019年   3篇
  2018年   11篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   25篇
  2013年   32篇
  2012年   32篇
  2011年   29篇
  2010年   12篇
  2009年   11篇
  2008年   21篇
  2007年   20篇
  2006年   18篇
  2005年   17篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有343条查询结果,搜索用时 15 毫秒
21.
22.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.Key words: Mek1, meiotic recombination, phosphorylation, Rdh54, Mus81  相似文献   
23.
A significant level of root elongation was induced in rice (Oryza sativa) grown under phosphorus-deficient conditions. The root elongation clearly varied among a total of 62 varieties screened under two different phosphorus levels. Two contrasting varieties, Gimbozu, with a low elongating response and Kasalath, with a high elongating response, were chosen and crossed to produce a hybrid population for QTL analyses. QTLs for the phosphorus deficiency-induced root elongation were detected by two linkage maps, i.e., one with 82 F3 families constructed by 97 simple sequence repeat (SSR) and sequence-tag site markers and another with 97 F8 lines by 790 amplified fragment length polymorphism and SSR markers. A single QTL for the elongation response was detected on chromosome 6, with a LOD score of 4.5 in both maps and explained about 20% of total phenotypic variance. In addition, this QTL itself, or a region tightly linked with it, partly explained an ability to reduce accumulation of excess iron in the shoots. The identified QTL will be useful to improve rice varieties against a complex nutritional disorder caused by phosphorus deficiency and iron toxicity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
24.
25.
26.
iNOS enhances rat intestinal apoptosis after ischemia-reperfusion   总被引:9,自引:0,他引:9  
The aim of this study was to demonstrate (i) the role of iNOS (inducible nitric oxide synthase) on apoptosis in the rat intestinal mucosa after ischemia-reperfusion, and (ii) the effect of iNOS on the release of cytochrome c from mitochondria. The superior mesenteric artery was occluded for 60 min and was followed by a 60 min reperfusion. Rats were pretreated with an intraperitoneal injection of the following iNOS inhibitors: N-nitro-L-arginine methyl ester, aminoguanidine, and (1S,5S,6R,7R)-7- chloro-3-imino-5-methyl-2-azabicyclo [4. 1. 0] heptane hydrochloride (ONO-1714). Apoptosis was evaluated and NO(X) in the portal vein was assayed. The amount of iNOS, caspase-3, and cytochrome c were determined by a Western blot analysis. Intestinal mucosal epithelial mitochondrial dehydrogenase activity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoilium bromide. Ischemia-reperfusion increased intestinal mucosal apoptosis, NO(X) production in the portal vein, the amount of iNOS protein, and the release of cytochrome c, but not caspase-3. Inhibitors of iNOS significantly attenuated the induction of apoptosis, increased NO(X) production, and release of cytochrome c. Mitochondrial dysfunction was induced by ischemia-reperfusion, which was ameliorated by iNOS inhibitors. Our results indicate that iNOS is related to increased mucosal apoptosis in the rat small intestine after ischemia-reperfusion, which is partly explained by the release of cytochrome c from mitochondria to cytosols following mitochondrial dysfunction.  相似文献   
27.
Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity.  相似文献   
28.
Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin.  相似文献   
29.
Major yolk protein (MYP), the predominant component of yolk granules in sea urchin eggs, is also contained in the coelomic fluid and nutritive phagocytes of the gonad in both sexes. MYP is stored in ovarian and testicular nutritive phagocytes prior to gametogenesis and is used during gametogenesis as material for synthesizing proteins and other components necessary for eggs and sperm. To reveal the expression profile and the main production site of MYP, we analyzed MYP mRNA expression in immature and maturing Pseudocentrotus depressus. Real‐time reverse‐transcribed polymerase chain reaction analysis showed that MYP mRNA was expressed predominantly in the digestive tract (stomach, intestine and rectum) and the gonad of both sexes. The total amounts of MYP mRNA in the whole digestive tract and in the whole gonad were at similar levels in both immature and maturing sea urchins. MYP mRNA was also detected in white morula cells and vibratile cells separated from the coelomic fluid by density gradient centrifugation, but the expression levels in these cells were very low compared with those in the digestive tract and the gonad. Using in situ hybridization analysis, MYP mRNA was detected in the inner epithelium of the digestive tract and in nutritive phagocytes of the ovary and testis, but was not detected in the germ cells. We conclude that the adult sea urchin has two predominant production sites for MYP regardless of sex and reproductive stage: the inner epithelium of the digestive tract and the nutritive phagocytes of the gonad. Mol. Reprod. Dev. 77: 59–68, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
30.
We have proposed a rapid phylogenetic classification at the strain level by MALDI-TOF MS using ribosomal protein matching profiling. In this study, the S10-spc-alpha operon, encoding half of the ribosomal subunit proteins and highly conserved in eubacterial genomes, was selected for construction of the ribosomal protein database as biomarkers for bacterial identification by MALDI-TOF MS analysis to establish a more reliable phylogenetic classification. Our method revealed that the 14 reliable and reproducible ribosomal subunit proteins with less than m/z 15,000, except for L14, coded in the S10-spc-alpha operon were significantly useful biomarkers for bacterial classification at species and strain levels by MALDI-TOF MS analysis of genus Pseudomonas strains. The obtained phylogenetic tree was consisted with that based on genetic sequence (gyrB). Since S10-spc-alpha operons of genus Pseudomonas strains were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains, the ribosomal subunit proteins encoded in S10-spc-alpha operon were suitable biomarkers for construction and correction of the database. MALDI-TOF MS analysis using these 14 selected ribosomal proteins is a rapid, efficient, and versatile bacterial identification method with the validation procedure for the obtained results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号