首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2383篇
  免费   144篇
  国内免费   2篇
  2529篇
  2022年   10篇
  2021年   24篇
  2020年   13篇
  2019年   21篇
  2018年   33篇
  2017年   24篇
  2016年   38篇
  2015年   56篇
  2014年   67篇
  2013年   127篇
  2012年   138篇
  2011年   138篇
  2010年   77篇
  2009年   65篇
  2008年   125篇
  2007年   110篇
  2006年   126篇
  2005年   116篇
  2004年   117篇
  2003年   111篇
  2002年   95篇
  2001年   86篇
  2000年   65篇
  1999年   76篇
  1998年   19篇
  1997年   24篇
  1996年   15篇
  1995年   21篇
  1994年   18篇
  1993年   13篇
  1992年   46篇
  1991年   37篇
  1990年   39篇
  1989年   30篇
  1988年   58篇
  1987年   41篇
  1986年   19篇
  1985年   28篇
  1984年   24篇
  1983年   24篇
  1982年   13篇
  1979年   18篇
  1978年   19篇
  1977年   12篇
  1976年   13篇
  1975年   13篇
  1974年   17篇
  1973年   17篇
  1972年   10篇
  1969年   18篇
排序方式: 共有2529条查询结果,搜索用时 0 毫秒
91.
Hypothalamic kisspeptin, encoded by the Kiss-1 gene, governs the hypothalamic-pituitary-gonadal axis by directly regulating the release of gonadotropin-releasing hormone. In this study, we examined the roles of activin, inhibin, and follistatin in the regulation of Kiss-1 gene expression using primary cultures of fetal rat neuronal cells, which express the Kiss-1 gene and kisspeptin. Stimulation with activin significantly increased Kiss-1 gene expression in these cultures by 2.02 ± 0.39-fold. In contrast, a significant decrease in Kiss-1 gene expression was observed with inhibin A and follistatin treatment. Inhibin B did not modulate Kiss-1 gene expression. Activin, inhibin, and follistatin were also expressed in fetal rat brain cultures and their expression was controlled by estradiol (E2). The inhibin α, βA, and βB subunits were upregulated by E2. Similarly, follistatin gene expression was significantly increased by E2 in these cells. Our results suggest the possibility that activin, inhibin, and follistatin expressed in the brain participate in the E2-induced feedback control of the hypothalamic-pituitary-gonadal axis.  相似文献   
92.
Sleep and Biological Rhythms - Patients with chronic pain develop peripheral neuropathy and experience sleep disturbance. Yokukansan is used to treat insomnia and control neuropathic pain. We...  相似文献   
93.
94.
It is well known that oxidative stress is related to the pathogenesis of adriamycin (ADR) nephropathy. However, it is unclear how nitric oxide (NO) is associated with the pathophysiological process after ADR administration. The NO level in a kidney homogenate was assayed by electron paramagnetic resonance (EPR) spectrometry using a direct in vivo NO trapping technique after ADR administration. N-(3-(aminomethyl)benzyl)acetamidine (1400W) was used as a specific, inducible nitric oxide synthase (iNOS) inhibitor. The levels of NO after ADR administration gradually increased for 6 h and then decreased until 24 h after ADR administration. The fractional excretion of Na (FENa) in the urine was elevated in the ADR group on day 1. Pre-treatment of the animals with 1400W attenuated the increase in NO levels despite further elevation of FENa. These findings suggest that iNOS-derived NO does not produce a harmful effect but rather protects the ADR-treated kidney against sodium excretion.  相似文献   
95.
Highlights? Triacylglyceride (TG) synthesis is coupled with lipid droplet (LD) growth ? Two LD populations exist: growing LDs, containing TG enzymes, and small LDs ? Specific TG synthesis enzymes move from the ER to LDs through membrane bridges ? LD localization of TG enzymes mediates expansion of a subset of LDs  相似文献   
96.

Objective

To identify similarities and differences in the clinical features of adult Japanese patients with individual anti-aminoacyl-tRNA synthetase antibodies (anti-ARS Abs).

Methods

This was a retrospective analysis of 166 adult Japanese patients with anti-ARS Abs detected by immunoprecipitation assays. These patients had visited Kanazawa University Hospital or collaborating medical centers from 2003 to 2009.

Results

Anti-ARS Ab specificity included anti-Jo-1 (36%), anti-EJ (23%), anti-PL-7 (18%), anti-PL-12 (11%), anti-KS (8%), and anti-OJ (5%). These anti-ARS Abs were mutually exclusive, except for one serum Ab that had both anti-PL-7 and PL-12 reactivity. Myositis was closely associated with anti-Jo-1, anti-EJ, and anti-PL-7, while interstitial lung disease (ILD) was correlated with all 6 anti-ARS Abs. Dermatomyositis (DM)-specific skin manifestations (heliotrope rash and Gottron’s sign) were frequently observed in patients with anti-Jo-1, anti-EJ, anti-PL-7, and anti-PL-12. Therefore, most clinical diagnoses were polymyositis or DM for anti-Jo-1, anti-EJ, and anti-PL-7; clinically amyopathic DM or ILD for anti-PL-12; and ILD for anti-KS and anti-OJ. Patients with anti-Jo-1, anti-EJ, and anti-PL-7 developed myositis later if they had ILD alone at the time of disease onset, and most patients with anti-ARS Abs eventually developed ILD if they did not have ILD at disease onset.

Conclusion

Patients with anti-ARS Abs are relatively homogeneous. However, the distribution and timing of myositis, ILD, and rashes differ among patients with individual anti-ARS Abs. Thus, identification of individual anti-ARS Abs is beneficial to define this rather homogeneous subset and to predict clinical outcomes within the “anti-synthetase syndrome.”  相似文献   
97.
Juvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides. A better understanding of the structural biology of JHBP should pave the way for the structure-based drug design of such compounds. Here, we report the crystal structure of the silkworm Bombyx mori JHBP in complex with two molecules of 2-methyl-2,4-pentanediol (MPD), one molecule (MPD1) bound in the JH-binding pocket while the other (MPD2) in a second cavity. Detailed comparison with the apo-JHBP and JHBP-JH II complex structures previously reported by us led to a number of intriguing findings. First, the JH-binding pocket changes its size in a ligand-dependent manner due to flexibility of the gate α1 helix. Second, MPD1 mimics interactions of the epoxide moiety of JH previously observed in the JHBP-JH complex, and MPD can compete with JH in binding to the JH-binding pocket. We also confirmed that methoprene, which has an MPD-like structure, inhibits the complex formation between JHBP and JH while the unepoxydated JH III (methyl farnesoate) does not. These findings may open the door to the development of novel IGRs targeted against JHBP. Third, binding of MPD to the second cavity of JHBP induces significant conformational changes accompanied with a cavity expansion. This finding, together with MPD2-JHBP interaction mechanism identified in the JHBP-MPD complex, should provide important guidance in the search for the natural ligand of the second cavity.  相似文献   
98.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   
99.
100.
All TGF-beta family members have a prodomain that is important for secretion. Lack of secretion of a TGF-beta family member GDF5 is known to underlie some skeletal abnormalities, such as brachydactyly type C that is characterized by a huge and unexplained phenotypic variability. To search for potential phenotypic modifiers regulating secretion of GDF5, we compared cells overexpressing wild type (Wt) GDF5 and GDF5 with a novel mutation in the prodomain identified in a large Pakistani family with Brachydactyly type C and mild Grebe type chondrodyslplasia (c527T>C; p.Leu176Pro). Initial in vitro expression studies revealed that the p.Leu176Pro mutant (Mut) GDF5 was not secreted outside the cells. We subsequently showed that GDF5 was capable of forming a complex with latent transforming growth factor binding proteins, LTBP1 and LTBP2. Furthermore, secretion of LTBP1 and LTBP2 was severely impaired in cells expressing the Mut-GDF5 compared to Wt-GDF5. Finally, we demonstrated that secretion of Wt-GDF5 was inhibited by the Mut-GDF5, but only when LTBP (LTBP1 or LTBP2) was co-expressed. Based on these findings, we suggest a novel model, where the dosage of secretory co-factors or stabilizing proteins like LTBP1 and LTBP2 in the microenvironment may affect the extent of GDF5 secretion and thereby function as modifiers in phenotypes caused by GDF5 mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号