全文获取类型
收费全文 | 413篇 |
免费 | 22篇 |
专业分类
435篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 10篇 |
2020年 | 7篇 |
2019年 | 5篇 |
2018年 | 14篇 |
2017年 | 10篇 |
2016年 | 11篇 |
2015年 | 16篇 |
2014年 | 26篇 |
2013年 | 33篇 |
2012年 | 52篇 |
2011年 | 31篇 |
2010年 | 22篇 |
2009年 | 23篇 |
2008年 | 22篇 |
2007年 | 19篇 |
2006年 | 24篇 |
2005年 | 19篇 |
2004年 | 15篇 |
2003年 | 12篇 |
2002年 | 23篇 |
2001年 | 5篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1974年 | 1篇 |
1972年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有435条查询结果,搜索用时 15 毫秒
1.
2.
3.
Min-Sik Kim Yi Zhong Shinichi Yachida N. V. Rajeshkumar Melissa L. Abel Arivusudar Marimuthu Keshav Mudgal Ralph H. Hruban Justin S. Poling Jeffrey W. Tyner Anirban Maitra Christine A. Iacobuzio-Donahue Akhilesh Pandey 《Molecular & cellular proteomics : MCP》2014,13(11):2803-2811
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (3–5). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl. 相似文献
4.
Rajeev K. Singh Kuldeep K. Lal Vindhya Mohindra Peyush Punia Rama S. Sah Akhilesh K. Mishra Rajesh Kumar B. N. Mishra W. S. Lakra 《Biochemical genetics》2010,48(9-10):760-778
The population structure of Labeo calbasu from 11 rivers belonging to the Indus, Ganges, Bhima, Mahanadi, and Godavari basins was investigated using allozyme marker systems. Seven out of 20 allozyme loci (35%) were polymorphic (P < 0.99). Both probability and score tests indicated significant deviation of genotype proportions from Hardy–Weinberg expectations at two loci, XDH* (Mahanadi, Bhima, and Godavari) and G6PDH* (Mahanadi). A pairwise genetic homogeneity test and F ST values indicated a low-to-moderate level (0.0515) of genetic structuring in the wild population of L. calbasu. AMOVA analysis also indicated moderate differentiation among the samples from different river basins. Analysis for genetic bottleneck was performed under the infinite allele model. The study revealed nine genetic stocks of L. calbasu from the natural population across Indian rivers. Evidence of genetic bottlenecks in some rivers was also revealed. 相似文献
5.
Three iridoid glycosides 6-O-(3'-O-benzoyl)-alpha-l-rhamnopyranosylcatalpol (1a), 6-O-(3'-O-trans-cinnamoyl)-alpha-l-rhamnopyranosylcatalpol (2a) and 6-O-(3'-O-cis-cinnamoyl)-alpha-l-rhamnopyranosylcatalpol (3a) were isolated from aerial parts of Gmelina arborea and structures were elucidated by spectral analysis. Additionally a known iridoid 6-O-(3', 4'-O-dibenzoyl)-alpha-l-rhamnopyranosylcatalpol (4) was also isolated and identified. 相似文献
6.
Aditya Sharma Chandan K. Maurya Deepti Arha Amit K. Rai Sushmita Singh Salil Varshney Jonathan D. Schertzer Akhilesh K. Tamrakar 《生物化学与生物物理学报:疾病的分子基础》2019,1865(1):136-146
Chronic inflammation contributes to obesity mediated metabolic disturbances, including insulin resistance. Obesity is associated with altered microbial load in metabolic tissues that can contribute to metabolic inflammation. Different bacterial components such as, LPS, peptidoglycans have been shown to underpin metabolic disturbances through interaction with host innate immune receptors. Activation of Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) with specific peptidoglycan moieties promotes insulin resistance, inflammation and lipolysis in adipocytes. However, it was not clear how Nod1-mediated lipolysis and inflammation is linked. Here, we tested if Nod1-mediated lipolysis caused accumulation of lipid intermediates and promoted cell autonomous inflammation in adipocytes. We showed that Nod1-mediated lipolysis caused accumulation of diacylglycerol (DAG) and activation of PKCδ in 3T3-L1 adipocytes, which was prevented with a Nod1 inhibitor. Nod1-activated PKCδ caused downstream stimulation of IRAK1/4 and was associated with increased expression of proinflammatory cytokines such as, IL-1β, IL-18, IL-6, TNFα and MCP-1. Pharmacological inhibition or siRNA mediated knockdown of IRAK1/4 attenuated Nod1-mediated activation of NF-κB, JNK, and the expression of proinflammatory cytokines. These results reveal that Nod1-mediated lipolysis promoted accumulation of DAG, which engaged PKCδ and IRAK1/4 to augment inflammation in 3T3-L1 adipocytes. 相似文献
7.
Hermjakob H Montecchi-Palazzi L Bader G Wojcik J Salwinski L Ceol A Moore S Orchard S Sarkans U von Mering C Roechert B Poux S Jung E Mersch H Kersey P Lappe M Li Y Zeng R Rana D Nikolski M Husi H Brun C Shanker K Grant SG Sander C Bork P Zhu W Pandey A Brazma A Jacq B Vidal M Sherman D Legrain P Cesareni G Xenarios I Eisenberg D Steipe B Hogue C Apweiler R 《Nature biotechnology》2004,22(2):177-183
8.
Peter Chi Youngho Kwon Dana N. Moses Changhyun Seong Michael G. Sehorn Akhilesh K. Singh Hideo Tsubouchi Eric C. Greene Hannah L. Klein Patrick Sung 《DNA Repair》2009,8(2):279-284
Genetic studies in budding and fission yeasts have provided evidence that Rdh54, a Swi2/Snf2-like factor, synergizes with the Dmc1 recombinase to mediate inter-homologue recombination during meiosis. Rdh54 associates with Dmc1 in the yeast two-hybrid assay, but whether the Rdh54–Dmc1 interaction is direct and the manner in which these two recombination factors may functionally co-operate to accomplish their biological task have not yet been defined. Here, using purified Schizosaccharomyces pombe proteins, we demonstrate complex formation between Rdh54 and Dmc1 and enhancement of the recombinase activity of Dmc1 by Rdh54. Consistent with published cytological and chromatin immunoprecipitation data that implicate Rdh54 in preventing the non-specific association of Dmc1 with chromatin, we show here that Rdh54 mediates the efficient removal of Dmc1 from dsDNA. These functional attributes of Rdh54 are reliant on its ATPase function. The results presented herein provide valuable information concerning the Rdh54–Dmc1 protein pair that is germane for understanding their role in meiotic recombination. The biochemical systems established in this study should be useful for the continuing dissection of the action mechanism of Rdh54 and Dmc1. 相似文献
9.
10.